aboutsummaryrefslogtreecommitdiff
path: root/hw/ppc/spapr_nvdimm.c
blob: ad7afe754448beefdcd2adaea914039dbd16c678 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/*
 * QEMU PAPR Storage Class Memory Interfaces
 *
 * Copyright (c) 2019-2020, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/ppc/spapr_drc.h"
#include "hw/ppc/spapr_nvdimm.h"
#include "hw/mem/nvdimm.h"
#include "qemu/nvdimm-utils.h"
#include "hw/ppc/fdt.h"
#include "qemu/range.h"
#include "hw/ppc/spapr_numa.h"
#include "block/thread-pool.h"
#include "migration/vmstate.h"
#include "qemu/pmem.h"
#include "hw/qdev-properties.h"

/* DIMM health bitmap bitmap indicators. Taken from kernel's papr_scm.c */
/* SCM device is unable to persist memory contents */
#define PAPR_PMEM_UNARMED PPC_BIT(0)

/*
 * The nvdimm size should be aligned to SCM block size.
 * The SCM block size should be aligned to SPAPR_MEMORY_BLOCK_SIZE
 * in order to have SCM regions not to overlap with dimm memory regions.
 * The SCM devices can have variable block sizes. For now, fixing the
 * block size to the minimum value.
 */
#define SPAPR_MINIMUM_SCM_BLOCK_SIZE SPAPR_MEMORY_BLOCK_SIZE

/* Have an explicit check for alignment */
QEMU_BUILD_BUG_ON(SPAPR_MINIMUM_SCM_BLOCK_SIZE % SPAPR_MEMORY_BLOCK_SIZE);

#define TYPE_SPAPR_NVDIMM "spapr-nvdimm"
OBJECT_DECLARE_TYPE(SpaprNVDIMMDevice, SPAPRNVDIMMClass, SPAPR_NVDIMM)

struct SPAPRNVDIMMClass {
    /* private */
    NVDIMMClass parent_class;

    /* public */
    void (*realize)(NVDIMMDevice *dimm, Error **errp);
    void (*unrealize)(NVDIMMDevice *dimm, Error **errp);
};

bool spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
                           uint64_t size, Error **errp)
{
    const MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
    const MachineState *ms = MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(nvdimm);
    MemoryRegion *mr = host_memory_backend_get_memory(dimm->hostmem);
    g_autofree char *uuidstr = NULL;
    QemuUUID uuid;
    int ret;

    if (!mc->nvdimm_supported) {
        error_setg(errp, "NVDIMM hotplug not supported for this machine");
        return false;
    }

    if (!ms->nvdimms_state->is_enabled) {
        error_setg(errp, "nvdimm device found but 'nvdimm=off' was set");
        return false;
    }

    if (object_property_get_int(OBJECT(nvdimm), NVDIMM_LABEL_SIZE_PROP,
                                &error_abort) == 0) {
        error_setg(errp, "PAPR requires NVDIMM devices to have label-size set");
        return false;
    }

    if (size % SPAPR_MINIMUM_SCM_BLOCK_SIZE) {
        error_setg(errp, "PAPR requires NVDIMM memory size (excluding label)"
                   " to be a multiple of %" PRIu64 "MB",
                   SPAPR_MINIMUM_SCM_BLOCK_SIZE / MiB);
        return false;
    }

    uuidstr = object_property_get_str(OBJECT(nvdimm), NVDIMM_UUID_PROP,
                                      &error_abort);
    ret = qemu_uuid_parse(uuidstr, &uuid);
    g_assert(!ret);

    if (qemu_uuid_is_null(&uuid)) {
        error_setg(errp, "NVDIMM device requires the uuid to be set");
        return false;
    }

    if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM) &&
        (memory_region_get_fd(mr) < 0)) {
        error_setg(errp, "spapr-nvdimm device requires the "
                   "memdev %s to be of memory-backend-file type",
                   object_get_canonical_path_component(OBJECT(dimm->hostmem)));
        return false;
    }

    return true;
}


void spapr_add_nvdimm(DeviceState *dev, uint64_t slot)
{
    SpaprDrc *drc;
    bool hotplugged = spapr_drc_hotplugged(dev);

    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot);
    g_assert(drc);

    /*
     * pc_dimm_get_free_slot() provided a free slot at pre-plug. The
     * corresponding DRC is thus assumed to be attachable.
     */
    spapr_drc_attach(drc, dev);

    if (hotplugged) {
        spapr_hotplug_req_add_by_index(drc);
    }
}

static int spapr_dt_nvdimm(SpaprMachineState *spapr, void *fdt,
                           int parent_offset, NVDIMMDevice *nvdimm)
{
    int child_offset;
    char *buf;
    SpaprDrc *drc;
    uint32_t drc_idx;
    uint32_t node = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_NODE_PROP,
                                             &error_abort);
    uint64_t slot = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_SLOT_PROP,
                                             &error_abort);
    uint64_t lsize = nvdimm->label_size;
    uint64_t size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
                                            NULL);

    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot);
    g_assert(drc);

    drc_idx = spapr_drc_index(drc);

    buf = g_strdup_printf("ibm,pmemory@%x", drc_idx);
    child_offset = fdt_add_subnode(fdt, parent_offset, buf);
    g_free(buf);

    _FDT(child_offset);

    _FDT((fdt_setprop_cell(fdt, child_offset, "reg", drc_idx)));
    _FDT((fdt_setprop_string(fdt, child_offset, "compatible", "ibm,pmemory")));
    _FDT((fdt_setprop_string(fdt, child_offset, "device_type", "ibm,pmemory")));

    spapr_numa_write_associativity_dt(spapr, fdt, child_offset, node);

    buf = qemu_uuid_unparse_strdup(&nvdimm->uuid);
    _FDT((fdt_setprop_string(fdt, child_offset, "ibm,unit-guid", buf)));
    g_free(buf);

    _FDT((fdt_setprop_cell(fdt, child_offset, "ibm,my-drc-index", drc_idx)));

    _FDT((fdt_setprop_u64(fdt, child_offset, "ibm,block-size",
                          SPAPR_MINIMUM_SCM_BLOCK_SIZE)));
    _FDT((fdt_setprop_u64(fdt, child_offset, "ibm,number-of-blocks",
                          size / SPAPR_MINIMUM_SCM_BLOCK_SIZE)));
    _FDT((fdt_setprop_cell(fdt, child_offset, "ibm,metadata-size", lsize)));

    _FDT((fdt_setprop_string(fdt, child_offset, "ibm,pmem-application",
                             "operating-system")));
    _FDT(fdt_setprop(fdt, child_offset, "ibm,cache-flush-required", NULL, 0));

    if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM)) {
        bool is_pmem = false, pmem_override = false;
        PCDIMMDevice *dimm = PC_DIMM(nvdimm);
        HostMemoryBackend *hostmem = dimm->hostmem;

        is_pmem = object_property_get_bool(OBJECT(hostmem), "pmem", NULL);
        pmem_override = object_property_get_bool(OBJECT(nvdimm),
                                                 "pmem-override", NULL);
        if (!is_pmem || pmem_override) {
            _FDT(fdt_setprop(fdt, child_offset, "ibm,hcall-flush-required",
                             NULL, 0));
        }
    }

    return child_offset;
}

int spapr_pmem_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
                           void *fdt, int *fdt_start_offset, Error **errp)
{
    NVDIMMDevice *nvdimm = NVDIMM(drc->dev);

    *fdt_start_offset = spapr_dt_nvdimm(spapr, fdt, 0, nvdimm);

    return 0;
}

void spapr_dt_persistent_memory(SpaprMachineState *spapr, void *fdt)
{
    int offset = fdt_subnode_offset(fdt, 0, "ibm,persistent-memory");
    GSList *iter, *nvdimms = nvdimm_get_device_list();

    if (offset < 0) {
        offset = fdt_add_subnode(fdt, 0, "ibm,persistent-memory");
        _FDT(offset);
        _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0x1)));
        _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 0x0)));
        _FDT((fdt_setprop_string(fdt, offset, "device_type",
                                 "ibm,persistent-memory")));
    }

    /* Create DT entries for cold plugged NVDIMM devices */
    for (iter = nvdimms; iter; iter = iter->next) {
        NVDIMMDevice *nvdimm = iter->data;

        spapr_dt_nvdimm(spapr, fdt, offset, nvdimm);
    }
    g_slist_free(nvdimms);

    return;
}

static target_ulong h_scm_read_metadata(PowerPCCPU *cpu,
                                        SpaprMachineState *spapr,
                                        target_ulong opcode,
                                        target_ulong *args)
{
    uint32_t drc_index = args[0];
    uint64_t offset = args[1];
    uint64_t len = args[2];
    SpaprDrc *drc = spapr_drc_by_index(drc_index);
    NVDIMMDevice *nvdimm;
    NVDIMMClass *ddc;
    uint64_t data = 0;
    uint8_t buf[8] = { 0 };

    if (!drc || !drc->dev ||
        spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
        return H_PARAMETER;
    }

    if (len != 1 && len != 2 &&
        len != 4 && len != 8) {
        return H_P3;
    }

    nvdimm = NVDIMM(drc->dev);
    if ((offset + len < offset) ||
        (nvdimm->label_size < len + offset)) {
        return H_P2;
    }

    ddc = NVDIMM_GET_CLASS(nvdimm);
    ddc->read_label_data(nvdimm, buf, len, offset);

    switch (len) {
    case 1:
        data = ldub_p(buf);
        break;
    case 2:
        data = lduw_be_p(buf);
        break;
    case 4:
        data = ldl_be_p(buf);
        break;
    case 8:
        data = ldq_be_p(buf);
        break;
    default:
        g_assert_not_reached();
    }

    args[0] = data;

    return H_SUCCESS;
}

static target_ulong h_scm_write_metadata(PowerPCCPU *cpu,
                                         SpaprMachineState *spapr,
                                         target_ulong opcode,
                                         target_ulong *args)
{
    uint32_t drc_index = args[0];
    uint64_t offset = args[1];
    uint64_t data = args[2];
    uint64_t len = args[3];
    SpaprDrc *drc = spapr_drc_by_index(drc_index);
    NVDIMMDevice *nvdimm;
    NVDIMMClass *ddc;
    uint8_t buf[8] = { 0 };

    if (!drc || !drc->dev ||
        spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
        return H_PARAMETER;
    }

    if (len != 1 && len != 2 &&
        len != 4 && len != 8) {
        return H_P4;
    }

    nvdimm = NVDIMM(drc->dev);
    if ((offset + len < offset) ||
        (nvdimm->label_size < len + offset) ||
        nvdimm->readonly) {
        return H_P2;
    }

    switch (len) {
    case 1:
        if (data & 0xffffffffffffff00) {
            return H_P2;
        }
        stb_p(buf, data);
        break;
    case 2:
        if (data & 0xffffffffffff0000) {
            return H_P2;
        }
        stw_be_p(buf, data);
        break;
    case 4:
        if (data & 0xffffffff00000000) {
            return H_P2;
        }
        stl_be_p(buf, data);
        break;
    case 8:
        stq_be_p(buf, data);
        break;
    default:
            g_assert_not_reached();
    }

    ddc = NVDIMM_GET_CLASS(nvdimm);
    ddc->write_label_data(nvdimm, buf, len, offset);

    return H_SUCCESS;
}

static target_ulong h_scm_bind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                   target_ulong opcode, target_ulong *args)
{
    uint32_t drc_index = args[0];
    uint64_t starting_idx = args[1];
    uint64_t no_of_scm_blocks_to_bind = args[2];
    uint64_t target_logical_mem_addr = args[3];
    uint64_t continue_token = args[4];
    uint64_t size;
    uint64_t total_no_of_scm_blocks;
    SpaprDrc *drc = spapr_drc_by_index(drc_index);
    hwaddr addr;
    NVDIMMDevice *nvdimm;

    if (!drc || !drc->dev ||
        spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
        return H_PARAMETER;
    }

    /*
     * Currently continue token should be zero qemu has already bound
     * everything and this hcall doesn't return H_BUSY.
     */
    if (continue_token > 0) {
        return H_P5;
    }

    /* Currently qemu assigns the address. */
    if (target_logical_mem_addr != 0xffffffffffffffff) {
        return H_OVERLAP;
    }

    nvdimm = NVDIMM(drc->dev);

    size = object_property_get_uint(OBJECT(nvdimm),
                                    PC_DIMM_SIZE_PROP, &error_abort);

    total_no_of_scm_blocks = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;

    if (starting_idx > total_no_of_scm_blocks) {
        return H_P2;
    }

    if (((starting_idx + no_of_scm_blocks_to_bind) < starting_idx) ||
        ((starting_idx + no_of_scm_blocks_to_bind) > total_no_of_scm_blocks)) {
        return H_P3;
    }

    addr = object_property_get_uint(OBJECT(nvdimm),
                                    PC_DIMM_ADDR_PROP, &error_abort);

    addr += starting_idx * SPAPR_MINIMUM_SCM_BLOCK_SIZE;

    /* Already bound, Return target logical address in R5 */
    args[1] = addr;
    args[2] = no_of_scm_blocks_to_bind;

    return H_SUCCESS;
}

typedef struct SpaprNVDIMMDeviceFlushState {
    uint64_t continue_token;
    int64_t hcall_ret;
    uint32_t drcidx;

    QLIST_ENTRY(SpaprNVDIMMDeviceFlushState) node;
} SpaprNVDIMMDeviceFlushState;

typedef struct SpaprNVDIMMDevice SpaprNVDIMMDevice;
struct SpaprNVDIMMDevice {
    /* private */
    NVDIMMDevice parent_obj;

    bool hcall_flush_required;
    uint64_t nvdimm_flush_token;
    QLIST_HEAD(, SpaprNVDIMMDeviceFlushState) pending_nvdimm_flush_states;
    QLIST_HEAD(, SpaprNVDIMMDeviceFlushState) completed_nvdimm_flush_states;

    /* public */

    /*
     * The 'on' value for this property forced the qemu to enable the hcall
     * flush for the nvdimm device even if the backend is a pmem
     */
    bool pmem_override;
};

static int flush_worker_cb(void *opaque)
{
    SpaprNVDIMMDeviceFlushState *state = opaque;
    SpaprDrc *drc = spapr_drc_by_index(state->drcidx);
    PCDIMMDevice *dimm;
    HostMemoryBackend *backend;
    int backend_fd;

    g_assert(drc != NULL);

    dimm = PC_DIMM(drc->dev);
    backend = MEMORY_BACKEND(dimm->hostmem);
    backend_fd = memory_region_get_fd(&backend->mr);

    if (object_property_get_bool(OBJECT(backend), "pmem", NULL)) {
        MemoryRegion *mr = host_memory_backend_get_memory(dimm->hostmem);
        void *ptr = memory_region_get_ram_ptr(mr);
        size_t size = object_property_get_uint(OBJECT(dimm), PC_DIMM_SIZE_PROP,
                                               NULL);

        /* flush pmem backend */
        pmem_persist(ptr, size);
    } else {
        /* flush raw backing image */
        if (qemu_fdatasync(backend_fd) < 0) {
            error_report("papr_scm: Could not sync nvdimm to backend file: %s",
                         strerror(errno));
            return H_HARDWARE;
        }
    }

    return H_SUCCESS;
}

static void spapr_nvdimm_flush_completion_cb(void *opaque, int hcall_ret)
{
    SpaprNVDIMMDeviceFlushState *state = opaque;
    SpaprDrc *drc = spapr_drc_by_index(state->drcidx);
    SpaprNVDIMMDevice *s_nvdimm;

    g_assert(drc != NULL);

    s_nvdimm = SPAPR_NVDIMM(drc->dev);

    state->hcall_ret = hcall_ret;
    QLIST_REMOVE(state, node);
    QLIST_INSERT_HEAD(&s_nvdimm->completed_nvdimm_flush_states, state, node);
}

static int spapr_nvdimm_flush_post_load(void *opaque, int version_id)
{
    SpaprNVDIMMDevice *s_nvdimm = (SpaprNVDIMMDevice *)opaque;
    SpaprNVDIMMDeviceFlushState *state;
    HostMemoryBackend *backend = MEMORY_BACKEND(PC_DIMM(s_nvdimm)->hostmem);
    bool is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL);
    bool pmem_override = object_property_get_bool(OBJECT(s_nvdimm),
                                                  "pmem-override", NULL);
    bool dest_hcall_flush_required = pmem_override || !is_pmem;

    if (!s_nvdimm->hcall_flush_required && dest_hcall_flush_required) {
        error_report("The file backend for the spapr-nvdimm device %s at "
                     "source is a pmem, use pmem=on and pmem-override=off to "
                     "continue.", DEVICE(s_nvdimm)->id);
        return -EINVAL;
    }
    if (s_nvdimm->hcall_flush_required && !dest_hcall_flush_required) {
        error_report("The guest expects hcall-flush support for the "
                     "spapr-nvdimm device %s, use pmem_override=on to "
                     "continue.", DEVICE(s_nvdimm)->id);
        return -EINVAL;
    }

    QLIST_FOREACH(state, &s_nvdimm->pending_nvdimm_flush_states, node) {
        thread_pool_submit_aio(flush_worker_cb, state,
                               spapr_nvdimm_flush_completion_cb, state);
    }

    return 0;
}

static const VMStateDescription vmstate_spapr_nvdimm_flush_state = {
     .name = "spapr_nvdimm_flush_state",
     .version_id = 1,
     .minimum_version_id = 1,
     .fields = (VMStateField[]) {
         VMSTATE_UINT64(continue_token, SpaprNVDIMMDeviceFlushState),
         VMSTATE_INT64(hcall_ret, SpaprNVDIMMDeviceFlushState),
         VMSTATE_UINT32(drcidx, SpaprNVDIMMDeviceFlushState),
         VMSTATE_END_OF_LIST()
     },
};

const VMStateDescription vmstate_spapr_nvdimm_states = {
    .name = "spapr_nvdimm_states",
    .version_id = 1,
    .minimum_version_id = 1,
    .post_load = spapr_nvdimm_flush_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(hcall_flush_required, SpaprNVDIMMDevice),
        VMSTATE_UINT64(nvdimm_flush_token, SpaprNVDIMMDevice),
        VMSTATE_QLIST_V(completed_nvdimm_flush_states, SpaprNVDIMMDevice, 1,
                        vmstate_spapr_nvdimm_flush_state,
                        SpaprNVDIMMDeviceFlushState, node),
        VMSTATE_QLIST_V(pending_nvdimm_flush_states, SpaprNVDIMMDevice, 1,
                        vmstate_spapr_nvdimm_flush_state,
                        SpaprNVDIMMDeviceFlushState, node),
        VMSTATE_END_OF_LIST()
    },
};

/*
 * Assign a token and reserve it for the new flush state.
 */
static SpaprNVDIMMDeviceFlushState *spapr_nvdimm_init_new_flush_state(
                                                SpaprNVDIMMDevice *spapr_nvdimm)
{
    SpaprNVDIMMDeviceFlushState *state;

    state = g_malloc0(sizeof(*state));

    spapr_nvdimm->nvdimm_flush_token++;
    /* Token zero is presumed as no job pending. Assert on overflow to zero */
    g_assert(spapr_nvdimm->nvdimm_flush_token != 0);

    state->continue_token = spapr_nvdimm->nvdimm_flush_token;

    QLIST_INSERT_HEAD(&spapr_nvdimm->pending_nvdimm_flush_states, state, node);

    return state;
}

/*
 * spapr_nvdimm_finish_flushes
 *      Waits for all pending flush requests to complete
 *      their execution and free the states
 */
void spapr_nvdimm_finish_flushes(void)
{
    SpaprNVDIMMDeviceFlushState *state, *next;
    GSList *list, *nvdimms;

    /*
     * Called on reset path, the main loop thread which calls
     * the pending BHs has gotten out running in the reset path,
     * finally reaching here. Other code path being guest
     * h_client_architecture_support, that's early boot up.
     */
    nvdimms = nvdimm_get_device_list();
    for (list = nvdimms; list; list = list->next) {
        NVDIMMDevice *nvdimm = list->data;
        if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM)) {
            SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(nvdimm);
            while (!QLIST_EMPTY(&s_nvdimm->pending_nvdimm_flush_states)) {
                aio_poll(qemu_get_aio_context(), true);
            }

            QLIST_FOREACH_SAFE(state, &s_nvdimm->completed_nvdimm_flush_states,
                               node, next) {
                QLIST_REMOVE(state, node);
                g_free(state);
            }
        }
    }
    g_slist_free(nvdimms);
}

/*
 * spapr_nvdimm_get_flush_status
 *      Fetches the status of the hcall worker and returns
 *      H_LONG_BUSY_ORDER_10_MSEC if the worker is still running.
 */
static int spapr_nvdimm_get_flush_status(SpaprNVDIMMDevice *s_nvdimm,
                                         uint64_t token)
{
    SpaprNVDIMMDeviceFlushState *state, *node;

    QLIST_FOREACH(state, &s_nvdimm->pending_nvdimm_flush_states, node) {
        if (state->continue_token == token) {
            return H_LONG_BUSY_ORDER_10_MSEC;
        }
    }

    QLIST_FOREACH_SAFE(state, &s_nvdimm->completed_nvdimm_flush_states,
                       node, node) {
        if (state->continue_token == token) {
            int ret = state->hcall_ret;
            QLIST_REMOVE(state, node);
            g_free(state);
            return ret;
        }
    }

    /* If not found in complete list too, invalid token */
    return H_P2;
}

/*
 * H_SCM_FLUSH
 * Input: drc_index, continue-token
 * Out: continue-token
 * Return Value: H_SUCCESS, H_Parameter, H_P2, H_LONG_BUSY_ORDER_10_MSEC,
 *               H_UNSUPPORTED
 *
 * Given a DRC Index Flush the data to backend NVDIMM device. The hcall returns
 * H_LONG_BUSY_ORDER_10_MSEC when the flush takes longer time and the hcall
 * needs to be issued multiple times in order to be completely serviced. The
 * continue-token from the output to be passed in the argument list of
 * subsequent hcalls until the hcall is completely serviced at which point
 * H_SUCCESS or other error is returned.
 */
static target_ulong h_scm_flush(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                target_ulong opcode, target_ulong *args)
{
    int ret;
    uint32_t drc_index = args[0];
    uint64_t continue_token = args[1];
    SpaprDrc *drc = spapr_drc_by_index(drc_index);
    PCDIMMDevice *dimm;
    HostMemoryBackend *backend = NULL;
    SpaprNVDIMMDeviceFlushState *state;
    int fd;

    if (!drc || !drc->dev ||
        spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
        return H_PARAMETER;
    }

    dimm = PC_DIMM(drc->dev);
    if (!object_dynamic_cast(OBJECT(dimm), TYPE_SPAPR_NVDIMM)) {
        return H_PARAMETER;
    }
    if (continue_token == 0) {
        bool is_pmem = false, pmem_override = false;
        backend = MEMORY_BACKEND(dimm->hostmem);
        fd = memory_region_get_fd(&backend->mr);

        if (fd < 0) {
            return H_UNSUPPORTED;
        }

        is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL);
        pmem_override = object_property_get_bool(OBJECT(dimm),
                                                "pmem-override", NULL);
        if (is_pmem && !pmem_override) {
            return H_UNSUPPORTED;
        }

        state = spapr_nvdimm_init_new_flush_state(SPAPR_NVDIMM(dimm));
        if (!state) {
            return H_HARDWARE;
        }

        state->drcidx = drc_index;

        thread_pool_submit_aio(flush_worker_cb, state,
                               spapr_nvdimm_flush_completion_cb, state);

        continue_token = state->continue_token;
    }

    ret = spapr_nvdimm_get_flush_status(SPAPR_NVDIMM(dimm), continue_token);
    if (H_IS_LONG_BUSY(ret)) {
        args[0] = continue_token;
    }

    return ret;
}

static target_ulong h_scm_unbind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                     target_ulong opcode, target_ulong *args)
{
    uint32_t drc_index = args[0];
    uint64_t starting_scm_logical_addr = args[1];
    uint64_t no_of_scm_blocks_to_unbind = args[2];
    uint64_t continue_token = args[3];
    uint64_t size_to_unbind;
    Range blockrange = range_empty;
    Range nvdimmrange = range_empty;
    SpaprDrc *drc = spapr_drc_by_index(drc_index);
    NVDIMMDevice *nvdimm;
    uint64_t size, addr;

    if (!drc || !drc->dev ||
        spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
        return H_PARAMETER;
    }

    /* continue_token should be zero as this hcall doesn't return H_BUSY. */
    if (continue_token > 0) {
        return H_P4;
    }

    /* Check if starting_scm_logical_addr is block aligned */
    if (!QEMU_IS_ALIGNED(starting_scm_logical_addr,
                         SPAPR_MINIMUM_SCM_BLOCK_SIZE)) {
        return H_P2;
    }

    size_to_unbind = no_of_scm_blocks_to_unbind * SPAPR_MINIMUM_SCM_BLOCK_SIZE;
    if (no_of_scm_blocks_to_unbind == 0 || no_of_scm_blocks_to_unbind !=
                               size_to_unbind / SPAPR_MINIMUM_SCM_BLOCK_SIZE) {
        return H_P3;
    }

    nvdimm = NVDIMM(drc->dev);
    size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
                                   &error_abort);
    addr = object_property_get_int(OBJECT(nvdimm), PC_DIMM_ADDR_PROP,
                                   &error_abort);

    range_init_nofail(&nvdimmrange, addr, size);
    range_init_nofail(&blockrange, starting_scm_logical_addr, size_to_unbind);

    if (!range_contains_range(&nvdimmrange, &blockrange)) {
        return H_P3;
    }

    args[1] = no_of_scm_blocks_to_unbind;

    /* let unplug take care of actual unbind */
    return H_SUCCESS;
}

#define H_UNBIND_SCOPE_ALL 0x1
#define H_UNBIND_SCOPE_DRC 0x2

static target_ulong h_scm_unbind_all(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                     target_ulong opcode, target_ulong *args)
{
    uint64_t target_scope = args[0];
    uint32_t drc_index = args[1];
    uint64_t continue_token = args[2];
    NVDIMMDevice *nvdimm;
    uint64_t size;
    uint64_t no_of_scm_blocks_unbound = 0;

    /* continue_token should be zero as this hcall doesn't return H_BUSY. */
    if (continue_token > 0) {
        return H_P4;
    }

    if (target_scope == H_UNBIND_SCOPE_DRC) {
        SpaprDrc *drc = spapr_drc_by_index(drc_index);

        if (!drc || !drc->dev ||
            spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
            return H_P2;
        }

        nvdimm = NVDIMM(drc->dev);
        size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
                                       &error_abort);

        no_of_scm_blocks_unbound = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
    } else if (target_scope ==  H_UNBIND_SCOPE_ALL) {
        GSList *list, *nvdimms;

        nvdimms = nvdimm_get_device_list();
        for (list = nvdimms; list; list = list->next) {
            nvdimm = list->data;
            size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
                                           &error_abort);

            no_of_scm_blocks_unbound += size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
        }
        g_slist_free(nvdimms);
    } else {
        return H_PARAMETER;
    }

    args[1] = no_of_scm_blocks_unbound;

    /* let unplug take care of actual unbind */
    return H_SUCCESS;
}

static target_ulong h_scm_health(PowerPCCPU *cpu, SpaprMachineState *spapr,
                                 target_ulong opcode, target_ulong *args)
{

    NVDIMMDevice *nvdimm;
    uint64_t hbitmap = 0;
    uint32_t drc_index = args[0];
    SpaprDrc *drc = spapr_drc_by_index(drc_index);
    const uint64_t hbitmap_mask = PAPR_PMEM_UNARMED;


    /* Ensure that the drc is valid & is valid PMEM dimm and is plugged in */
    if (!drc || !drc->dev ||
        spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
        return H_PARAMETER;
    }

    nvdimm = NVDIMM(drc->dev);

    /* Update if the nvdimm is unarmed and send its status via health bitmaps */
    if (object_property_get_bool(OBJECT(nvdimm), NVDIMM_UNARMED_PROP, NULL)) {
        hbitmap |= PAPR_PMEM_UNARMED;
    }

    /* Update the out args with health bitmap/mask */
    args[0] = hbitmap;
    args[1] = hbitmap_mask;

    return H_SUCCESS;
}

static void spapr_scm_register_types(void)
{
    /* qemu/scm specific hcalls */
    spapr_register_hypercall(H_SCM_READ_METADATA, h_scm_read_metadata);
    spapr_register_hypercall(H_SCM_WRITE_METADATA, h_scm_write_metadata);
    spapr_register_hypercall(H_SCM_BIND_MEM, h_scm_bind_mem);
    spapr_register_hypercall(H_SCM_UNBIND_MEM, h_scm_unbind_mem);
    spapr_register_hypercall(H_SCM_UNBIND_ALL, h_scm_unbind_all);
    spapr_register_hypercall(H_SCM_HEALTH, h_scm_health);
    spapr_register_hypercall(H_SCM_FLUSH, h_scm_flush);
}

type_init(spapr_scm_register_types)

static void spapr_nvdimm_realize(NVDIMMDevice *dimm, Error **errp)
{
    SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(dimm);
    HostMemoryBackend *backend = MEMORY_BACKEND(PC_DIMM(dimm)->hostmem);
    bool is_pmem = object_property_get_bool(OBJECT(backend),  "pmem", NULL);
    bool pmem_override = object_property_get_bool(OBJECT(dimm), "pmem-override",
                                             NULL);
    if (!is_pmem || pmem_override) {
        s_nvdimm->hcall_flush_required = true;
    }

    vmstate_register_any(NULL, &vmstate_spapr_nvdimm_states, dimm);
}

static void spapr_nvdimm_unrealize(NVDIMMDevice *dimm)
{
    vmstate_unregister(NULL, &vmstate_spapr_nvdimm_states, dimm);
}

static Property spapr_nvdimm_properties[] = {
#ifdef CONFIG_LIBPMEM
    DEFINE_PROP_BOOL("pmem-override", SpaprNVDIMMDevice, pmem_override, false),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

static void spapr_nvdimm_class_init(ObjectClass *oc, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(oc);
    NVDIMMClass *nvc = NVDIMM_CLASS(oc);

    nvc->realize = spapr_nvdimm_realize;
    nvc->unrealize = spapr_nvdimm_unrealize;

    device_class_set_props(dc, spapr_nvdimm_properties);
}

static void spapr_nvdimm_init(Object *obj)
{
    SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(obj);

    s_nvdimm->hcall_flush_required = false;
    QLIST_INIT(&s_nvdimm->pending_nvdimm_flush_states);
    QLIST_INIT(&s_nvdimm->completed_nvdimm_flush_states);
}

static TypeInfo spapr_nvdimm_info = {
    .name          = TYPE_SPAPR_NVDIMM,
    .parent        = TYPE_NVDIMM,
    .class_init    = spapr_nvdimm_class_init,
    .class_size    = sizeof(SPAPRNVDIMMClass),
    .instance_size = sizeof(SpaprNVDIMMDevice),
    .instance_init = spapr_nvdimm_init,
};

static void spapr_nvdimm_register_types(void)
{
    type_register_static(&spapr_nvdimm_info);
}

type_init(spapr_nvdimm_register_types)