aboutsummaryrefslogtreecommitdiff
path: root/hw/ppc/spapr_numa.c
blob: b50796bbe30eb6519b7668209a34784f3887d2b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
 *
 * Copyright IBM Corp. 2020
 *
 * Authors:
 *  Daniel Henrique Barboza      <danielhb413@gmail.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "hw/ppc/spapr_numa.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/fdt.h"

/* Moved from hw/ppc/spapr_pci_nvlink2.c */
#define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))

static bool spapr_numa_is_symmetrical(MachineState *ms)
{
    int src, dst;
    int nb_numa_nodes = ms->numa_state->num_nodes;
    NodeInfo *numa_info = ms->numa_state->nodes;

    for (src = 0; src < nb_numa_nodes; src++) {
        for (dst = src; dst < nb_numa_nodes; dst++) {
            if (numa_info[src].distance[dst] !=
                numa_info[dst].distance[src]) {
                return false;
            }
        }
    }

    return true;
}

/*
 * This function will translate the user distances into
 * what the kernel understand as possible values: 10
 * (local distance), 20, 40, 80 and 160, and return the equivalent
 * NUMA level for each. Current heuristic is:
 *  - local distance (10) returns numa_level = 0x4, meaning there is
 *    no rounding for local distance
 *  - distances between 11 and 30 inclusive -> rounded to 20,
 *    numa_level = 0x3
 *  - distances between 31 and 60 inclusive -> rounded to 40,
 *    numa_level = 0x2
 *  - distances between 61 and 120 inclusive -> rounded to 80,
 *    numa_level = 0x1
 *  - everything above 120 returns numa_level = 0 to indicate that
 *    there is no match. This will be calculated as disntace = 160
 *    by the kernel (as of v5.9)
 */
static uint8_t spapr_numa_get_numa_level(uint8_t distance)
{
    if (distance == 10) {
        return 0x4;
    } else if (distance > 11 && distance <= 30) {
        return 0x3;
    } else if (distance > 31 && distance <= 60) {
        return 0x2;
    } else if (distance > 61 && distance <= 120) {
        return 0x1;
    }

    return 0;
}

static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr)
{
    MachineState *ms = MACHINE(spapr);
    NodeInfo *numa_info = ms->numa_state->nodes;
    int nb_numa_nodes = ms->numa_state->num_nodes;
    int src, dst, i;

    for (src = 0; src < nb_numa_nodes; src++) {
        for (dst = src; dst < nb_numa_nodes; dst++) {
            /*
             * This is how the associativity domain between A and B
             * is calculated:
             *
             * - get the distance D between them
             * - get the correspondent NUMA level 'n_level' for D
             * - all associativity arrays were initialized with their own
             * numa_ids, and we're calculating the distance in node_id
             * ascending order, starting from node id 0 (the first node
             * retrieved by numa_state). This will have a cascade effect in
             * the algorithm because the associativity domains that node 0
             * defines will be carried over to other nodes, and node 1
             * associativities will be carried over after taking node 0
             * associativities into account, and so on. This happens because
             * we'll assign assoc_src as the associativity domain of dst
             * as well, for all NUMA levels beyond and including n_level.
             *
             * The PPC kernel expects the associativity domains of node 0 to
             * be always 0, and this algorithm will grant that by default.
             */
            uint8_t distance = numa_info[src].distance[dst];
            uint8_t n_level = spapr_numa_get_numa_level(distance);
            uint32_t assoc_src;

            /*
             * n_level = 0 means that the distance is greater than our last
             * rounded value (120). In this case there is no NUMA level match
             * between src and dst and we can skip the remaining of the loop.
             *
             * The Linux kernel will assume that the distance between src and
             * dst, in this case of no match, is 10 (local distance) doubled
             * for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
             * levels (4), so this gives us 10*2*2*2*2 = 160.
             *
             * This logic can be seen in the Linux kernel source code, as of
             * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
             */
            if (n_level == 0) {
                continue;
            }

            /*
             * We must assign all assoc_src to dst, starting from n_level
             * and going up to 0x1.
             */
            for (i = n_level; i > 0; i--) {
                assoc_src = spapr->numa_assoc_array[src][i];
                spapr->numa_assoc_array[dst][i] = assoc_src;
            }
        }
    }

}

void spapr_numa_associativity_init(SpaprMachineState *spapr,
                                   MachineState *machine)
{
    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
    int nb_numa_nodes = machine->numa_state->num_nodes;
    int i, j, max_nodes_with_gpus;
    bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr);

    /*
     * For all associativity arrays: first position is the size,
     * position MAX_DISTANCE_REF_POINTS is always the numa_id,
     * represented by the index 'i'.
     *
     * This will break on sparse NUMA setups, when/if QEMU starts
     * to support it, because there will be no more guarantee that
     * 'i' will be a valid node_id set by the user.
     */
    for (i = 0; i < nb_numa_nodes; i++) {
        spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
        spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);

        /*
         * Fill all associativity domains of non-zero NUMA nodes with
         * node_id. This is required because the default value (0) is
         * considered a match with associativity domains of node 0.
         */
        if (!using_legacy_numa && i != 0) {
            for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
                spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
            }
        }
    }

    /*
     * Initialize NVLink GPU associativity arrays. We know that
     * the first GPU will take the first available NUMA id, and
     * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
     * At this point we're not sure if there are GPUs or not, but
     * let's initialize the associativity arrays and allow NVLink
     * GPUs to be handled like regular NUMA nodes later on.
     */
    max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;

    for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
        spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);

        for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
            uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
                                 SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
            spapr->numa_assoc_array[i][j] = gpu_assoc;
        }

        spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
    }

    /*
     * Legacy NUMA guests (pseries-5.1 and older, or guests with only
     * 1 NUMA node) will not benefit from anything we're going to do
     * after this point.
     */
    if (using_legacy_numa) {
        return;
    }

    if (!spapr_numa_is_symmetrical(machine)) {
        error_report("Asymmetrical NUMA topologies aren't supported "
                     "in the pSeries machine");
        exit(EXIT_FAILURE);
    }

    spapr_numa_define_associativity_domains(spapr);
}

void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
                                       int offset, int nodeid)
{
    _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
                      spapr->numa_assoc_array[nodeid],
                      sizeof(spapr->numa_assoc_array[nodeid]))));
}

static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
                                           PowerPCCPU *cpu)
{
    uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
    int index = spapr_get_vcpu_id(cpu);

    /*
     * VCPUs have an extra 'cpu_id' value in ibm,associativity
     * compared to other resources. Increment the size at index
     * 0, put cpu_id last, then copy the remaining associativity
     * domains.
     */
    vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
    vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
    memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
           (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));

    return vcpu_assoc;
}

int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
                            int offset, PowerPCCPU *cpu)
{
    g_autofree uint32_t *vcpu_assoc = NULL;

    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);

    /* Advertise NUMA via ibm,associativity */
    return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
                       VCPU_ASSOC_SIZE * sizeof(uint32_t));
}


int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
                                         int offset)
{
    MachineState *machine = MACHINE(spapr);
    int nb_numa_nodes = machine->numa_state->num_nodes;
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
    uint32_t *int_buf, *cur_index, buf_len;
    int ret, i;

    /* ibm,associativity-lookup-arrays */
    buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
    cur_index = int_buf = g_malloc0(buf_len);
    int_buf[0] = cpu_to_be32(nr_nodes);
     /* Number of entries per associativity list */
    int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
    cur_index += 2;
    for (i = 0; i < nr_nodes; i++) {
        /*
         * For the lookup-array we use the ibm,associativity array,
         * from numa_assoc_array. without the first element (size).
         */
        uint32_t *associativity = spapr->numa_assoc_array[i];
        memcpy(cur_index, ++associativity,
               sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
        cur_index += MAX_DISTANCE_REF_POINTS;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
                      (cur_index - int_buf) * sizeof(uint32_t));
    g_free(int_buf);

    return ret;
}

/*
 * Helper that writes ibm,associativity-reference-points and
 * max-associativity-domains in the RTAS pointed by @rtas
 * in the DT @fdt.
 */
void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
{
    MachineState *ms = MACHINE(spapr);
    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
    uint32_t refpoints[] = {
        cpu_to_be32(0x4),
        cpu_to_be32(0x3),
        cpu_to_be32(0x2),
        cpu_to_be32(0x1),
    };
    uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
    uint32_t maxdomain = ms->numa_state->num_nodes + spapr->gpu_numa_id;
    uint32_t maxdomains[] = {
        cpu_to_be32(4),
        cpu_to_be32(maxdomain),
        cpu_to_be32(maxdomain),
        cpu_to_be32(maxdomain),
        cpu_to_be32(maxdomain)
    };

    if (spapr_machine_using_legacy_numa(spapr)) {
        uint32_t legacy_refpoints[] = {
            cpu_to_be32(0x4),
            cpu_to_be32(0x4),
            cpu_to_be32(0x2),
        };
        uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
        uint32_t legacy_maxdomains[] = {
            cpu_to_be32(4),
            cpu_to_be32(legacy_maxdomain),
            cpu_to_be32(legacy_maxdomain),
            cpu_to_be32(legacy_maxdomain),
            cpu_to_be32(spapr->gpu_numa_id),
        };

        G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
        G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));

        nr_refpoints = 3;

        memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
        memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));

        /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
        if (smc->pre_5_1_assoc_refpoints) {
            nr_refpoints = 2;
        }
    }

    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
                     refpoints, nr_refpoints * sizeof(refpoints[0])));

    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
                     maxdomains, sizeof(maxdomains)));
}

static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
                                              SpaprMachineState *spapr,
                                              target_ulong opcode,
                                              target_ulong *args)
{
    g_autofree uint32_t *vcpu_assoc = NULL;
    target_ulong flags = args[0];
    target_ulong procno = args[1];
    PowerPCCPU *tcpu;
    int idx, assoc_idx;

    /* only support procno from H_REGISTER_VPA */
    if (flags != 0x1) {
        return H_FUNCTION;
    }

    tcpu = spapr_find_cpu(procno);
    if (tcpu == NULL) {
        return H_P2;
    }

    /*
     * Given that we want to be flexible with the sizes and indexes,
     * we must consider that there is a hard limit of how many
     * associativities domain we can fit in R4 up to R9, which would be
     * 12 associativity domains for vcpus. Assert and bail if that's
     * not the case.
     */
    G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);

    vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
    /* assoc_idx starts at 1 to skip associativity size */
    assoc_idx = 1;

#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
                             ((uint64_t)(b) & 0xffffffff))

    for (idx = 0; idx < 6; idx++) {
        int32_t a, b;

        /*
         * vcpu_assoc[] will contain the associativity domains for tcpu,
         * including tcpu->node_id and procno, meaning that we don't
         * need to use these variables here.
         *
         * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
         * macro. The ternary will fill the remaining registers with -1
         * after we went through vcpu_assoc[].
         */
        a = assoc_idx < VCPU_ASSOC_SIZE ?
            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
        b = assoc_idx < VCPU_ASSOC_SIZE ?
            be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;

        args[idx] = ASSOCIATIVITY(a, b);
    }
#undef ASSOCIATIVITY

    return H_SUCCESS;
}

static void spapr_numa_register_types(void)
{
    /* Virtual Processor Home Node */
    spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
                             h_home_node_associativity);
}

type_init(spapr_numa_register_types)