aboutsummaryrefslogtreecommitdiff
path: root/hw/ppc/spapr_drc.c
blob: 21f5bf1421dbad82d65802d101dc4cbce0184ddf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
/*
 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
 *
 * Copyright IBM Corp. 2014
 *
 * Authors:
 *  Michael Roth      <mdroth@linux.vnet.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu/cutils.h"
#include "hw/ppc/spapr_drc.h"
#include "qom/object.h"
#include "hw/qdev.h"
#include "qapi/visitor.h"
#include "qemu/error-report.h"
#include "hw/ppc/spapr.h" /* for RTAS return codes */
#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
#include "trace.h"

#define DRC_CONTAINER_PATH "/dr-connector"
#define DRC_INDEX_TYPE_SHIFT 28
#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)

sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

    return 1 << drck->typeshift;
}

uint32_t spapr_drc_index(sPAPRDRConnector *drc)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

    /* no set format for a drc index: it only needs to be globally
     * unique. this is how we encode the DRC type on bare-metal
     * however, so might as well do that here
     */
    return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
        | (drc->id & DRC_INDEX_ID_MASK);
}

static uint32_t set_isolation_state(sPAPRDRConnector *drc,
                                    sPAPRDRIsolationState state)
{
    trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);

    /* if the guest is configuring a device attached to this DRC, we
     * should reset the configuration state at this point since it may
     * no longer be reliable (guest released device and needs to start
     * over, or unplug occurred so the FDT is no longer valid)
     */
    if (state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
        g_free(drc->ccs);
        drc->ccs = NULL;
    }

    if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
        /* cannot unisolate a non-existent resource, and, or resources
         * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 13.5.3.5)
         */
        if (!drc->dev ||
            drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
            return RTAS_OUT_NO_SUCH_INDICATOR;
        }
    }

    /*
     * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
     * belong to a DIMM device that is marked for removal.
     *
     * Currently the guest userspace tool drmgr that drives the memory
     * hotplug/unplug will just try to remove a set of 'removable' LMBs
     * in response to a hot unplug request that is based on drc-count.
     * If the LMB being removed doesn't belong to a DIMM device that is
     * actually being unplugged, fail the isolation request here.
     */
    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
        if ((state == SPAPR_DR_ISOLATION_STATE_ISOLATED) &&
             !drc->awaiting_release) {
            return RTAS_OUT_HW_ERROR;
        }
    }

    drc->isolation_state = state;

    if (drc->isolation_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
        /* if we're awaiting release, but still in an unconfigured state,
         * it's likely the guest is still in the process of configuring
         * the device and is transitioning the devices to an ISOLATED
         * state as a part of that process. so we only complete the
         * removal when this transition happens for a device in a
         * configured state, as suggested by the state diagram from
         * PAPR+ 2.7, 13.4
         */
        if (drc->awaiting_release) {
            uint32_t drc_index = spapr_drc_index(drc);
            if (drc->configured) {
                trace_spapr_drc_set_isolation_state_finalizing(drc_index);
                spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
            } else {
                trace_spapr_drc_set_isolation_state_deferring(drc_index);
            }
        }
        drc->configured = false;
    }

    return RTAS_OUT_SUCCESS;
}

static uint32_t set_allocation_state(sPAPRDRConnector *drc,
                                     sPAPRDRAllocationState state)
{
    trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);

    if (state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
        /* if there's no resource/device associated with the DRC, there's
         * no way for us to put it in an allocation state consistent with
         * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
         * result in an RTAS return code of -3 / "no such indicator"
         */
        if (!drc->dev) {
            return RTAS_OUT_NO_SUCH_INDICATOR;
        }
    }

    if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
        drc->allocation_state = state;
        if (drc->awaiting_release &&
            drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
            uint32_t drc_index = spapr_drc_index(drc);
            trace_spapr_drc_set_allocation_state_finalizing(drc_index);
            spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
        } else if (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
            drc->awaiting_allocation = false;
        }
    }
    return RTAS_OUT_SUCCESS;
}

static const char *spapr_drc_name(sPAPRDRConnector *drc)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

    /* human-readable name for a DRC to encode into the DT
     * description. this is mainly only used within a guest in place
     * of the unique DRC index.
     *
     * in the case of VIO/PCI devices, it corresponds to a "location
     * code" that maps a logical device/function (DRC index) to a
     * physical (or virtual in the case of VIO) location in the system
     * by chaining together the "location label" for each
     * encapsulating component.
     *
     * since this is more to do with diagnosing physical hardware
     * issues than guest compatibility, we choose location codes/DRC
     * names that adhere to the documented format, but avoid encoding
     * the entire topology information into the label/code, instead
     * just using the location codes based on the labels for the
     * endpoints (VIO/PCI adaptor connectors), which is basically just
     * "C" followed by an integer ID.
     *
     * DRC names as documented by PAPR+ v2.7, 13.5.2.4
     * location codes as documented by PAPR+ v2.7, 12.3.1.5
     */
    return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
}

/*
 * dr-entity-sense sensor value
 * returned via get-sensor-state RTAS calls
 * as expected by state diagram in PAPR+ 2.7, 13.4
 * based on the current allocation/indicator/power states
 * for the DR connector.
 */
static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc)
{
    /* this assumes all PCI devices are assigned to a 'live insertion'
     * power domain, where QEMU manages power state automatically as
     * opposed to the guest. present, non-PCI resources are unaffected
     * by power state.
     */
    return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
        : SPAPR_DR_ENTITY_SENSE_EMPTY;
}

static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc)
{
    if (drc->dev
        && (drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE)) {
        return SPAPR_DR_ENTITY_SENSE_PRESENT;
    } else {
        return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
    }
}

static void prop_get_index(Object *obj, Visitor *v, const char *name,
                           void *opaque, Error **errp)
{
    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
    uint32_t value = spapr_drc_index(drc);
    visit_type_uint32(v, name, &value, errp);
}

static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
                         void *opaque, Error **errp)
{
    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
    Error *err = NULL;
    int fdt_offset_next, fdt_offset, fdt_depth;
    void *fdt;

    if (!drc->fdt) {
        visit_type_null(v, NULL, errp);
        return;
    }

    fdt = drc->fdt;
    fdt_offset = drc->fdt_start_offset;
    fdt_depth = 0;

    do {
        const char *name = NULL;
        const struct fdt_property *prop = NULL;
        int prop_len = 0, name_len = 0;
        uint32_t tag;

        tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
        switch (tag) {
        case FDT_BEGIN_NODE:
            fdt_depth++;
            name = fdt_get_name(fdt, fdt_offset, &name_len);
            visit_start_struct(v, name, NULL, 0, &err);
            if (err) {
                error_propagate(errp, err);
                return;
            }
            break;
        case FDT_END_NODE:
            /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
            g_assert(fdt_depth > 0);
            visit_check_struct(v, &err);
            visit_end_struct(v, NULL);
            if (err) {
                error_propagate(errp, err);
                return;
            }
            fdt_depth--;
            break;
        case FDT_PROP: {
            int i;
            prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
            name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
            visit_start_list(v, name, NULL, 0, &err);
            if (err) {
                error_propagate(errp, err);
                return;
            }
            for (i = 0; i < prop_len; i++) {
                visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
                if (err) {
                    error_propagate(errp, err);
                    return;
                }
            }
            visit_check_list(v, &err);
            visit_end_list(v, NULL);
            if (err) {
                error_propagate(errp, err);
                return;
            }
            break;
        }
        default:
            error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
        }
        fdt_offset = fdt_offset_next;
    } while (fdt_depth != 0);
}

void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
                      int fdt_start_offset, bool coldplug, Error **errp)
{
    trace_spapr_drc_attach(spapr_drc_index(drc));

    if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
        error_setg(errp, "an attached device is still awaiting release");
        return;
    }
    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
        g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE);
    }
    g_assert(fdt || coldplug);

    drc->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;

    drc->dev = d;
    drc->fdt = fdt;
    drc->fdt_start_offset = fdt_start_offset;
    drc->configured = coldplug;

    if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
        drc->awaiting_allocation = true;
    }

    object_property_add_link(OBJECT(drc), "device",
                             object_get_typename(OBJECT(drc->dev)),
                             (Object **)(&drc->dev),
                             NULL, 0, NULL);
}

void spapr_drc_detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp)
{
    trace_spapr_drc_detach(spapr_drc_index(drc));

    if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
        trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc));
        drc->awaiting_release = true;
        return;
    }

    if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
        drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
        trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc));
        drc->awaiting_release = true;
        return;
    }

    if (drc->awaiting_allocation) {
        drc->awaiting_release = true;
        trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc));
        return;
    }

    drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;

    /* Calling release callbacks based on spapr_drc_type(drc). */
    switch (spapr_drc_type(drc)) {
    case SPAPR_DR_CONNECTOR_TYPE_CPU:
        spapr_core_release(drc->dev);
        break;
    case SPAPR_DR_CONNECTOR_TYPE_PCI:
        spapr_phb_remove_pci_device_cb(drc->dev);
        break;
    case SPAPR_DR_CONNECTOR_TYPE_LMB:
        spapr_lmb_release(drc->dev);
        break;
    case SPAPR_DR_CONNECTOR_TYPE_PHB:
    case SPAPR_DR_CONNECTOR_TYPE_VIO:
    default:
        g_assert(false);
    }

    drc->awaiting_release = false;
    g_free(drc->fdt);
    drc->fdt = NULL;
    drc->fdt_start_offset = 0;
    object_property_del(OBJECT(drc), "device", NULL);
    drc->dev = NULL;
}

static bool release_pending(sPAPRDRConnector *drc)
{
    return drc->awaiting_release;
}

static void reset(DeviceState *d)
{
    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

    trace_spapr_drc_reset(spapr_drc_index(drc));

    g_free(drc->ccs);
    drc->ccs = NULL;

    /* immediately upon reset we can safely assume DRCs whose devices
     * are pending removal can be safely removed, and that they will
     * subsequently be left in an ISOLATED state. move the DRC to this
     * state in these cases (which will in turn complete any pending
     * device removals)
     */
    if (drc->awaiting_release) {
        drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_ISOLATED);
        /* generally this should also finalize the removal, but if the device
         * hasn't yet been configured we normally defer removal under the
         * assumption that this transition is taking place as part of device
         * configuration. so check if we're still waiting after this, and
         * force removal if we are
         */
        if (drc->awaiting_release) {
            spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
        }

        /* non-PCI devices may be awaiting a transition to UNUSABLE */
        if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
            drc->awaiting_release) {
            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_UNUSABLE);
        }
    }
}

static bool spapr_drc_needed(void *opaque)
{
    sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    bool rc = false;
    sPAPRDREntitySense value = drck->dr_entity_sense(drc);

    /* If no dev is plugged in there is no need to migrate the DRC state */
    if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
        return false;
    }

    /*
     * If there is dev plugged in, we need to migrate the DRC state when
     * it is different from cold-plugged state
     */
    switch (spapr_drc_type(drc)) {
    case SPAPR_DR_CONNECTOR_TYPE_PCI:
    case SPAPR_DR_CONNECTOR_TYPE_CPU:
    case SPAPR_DR_CONNECTOR_TYPE_LMB:
        rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) &&
               (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) &&
               drc->configured && !drc->awaiting_release);
        break;
    case SPAPR_DR_CONNECTOR_TYPE_PHB:
    case SPAPR_DR_CONNECTOR_TYPE_VIO:
    default:
        g_assert_not_reached();
    }
    return rc;
}

static const VMStateDescription vmstate_spapr_drc = {
    .name = "spapr_drc",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = spapr_drc_needed,
    .fields  = (VMStateField []) {
        VMSTATE_UINT32(isolation_state, sPAPRDRConnector),
        VMSTATE_UINT32(allocation_state, sPAPRDRConnector),
        VMSTATE_UINT32(dr_indicator, sPAPRDRConnector),
        VMSTATE_BOOL(configured, sPAPRDRConnector),
        VMSTATE_BOOL(awaiting_release, sPAPRDRConnector),
        VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector),
        VMSTATE_END_OF_LIST()
    }
};

static void realize(DeviceState *d, Error **errp)
{
    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
    Object *root_container;
    char link_name[256];
    gchar *child_name;
    Error *err = NULL;

    trace_spapr_drc_realize(spapr_drc_index(drc));
    /* NOTE: we do this as part of realize/unrealize due to the fact
     * that the guest will communicate with the DRC via RTAS calls
     * referencing the global DRC index. By unlinking the DRC
     * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
     * inaccessible by the guest, since lookups rely on this path
     * existing in the composition tree
     */
    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
    snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc));
    child_name = object_get_canonical_path_component(OBJECT(drc));
    trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
    object_property_add_alias(root_container, link_name,
                              drc->owner, child_name, &err);
    if (err) {
        error_report_err(err);
        object_unref(OBJECT(drc));
    }
    g_free(child_name);
    vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
                     drc);
    trace_spapr_drc_realize_complete(spapr_drc_index(drc));
}

static void unrealize(DeviceState *d, Error **errp)
{
    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
    Object *root_container;
    char name[256];
    Error *err = NULL;

    trace_spapr_drc_unrealize(spapr_drc_index(drc));
    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
    snprintf(name, sizeof(name), "%x", spapr_drc_index(drc));
    object_property_del(root_container, name, &err);
    if (err) {
        error_report_err(err);
        object_unref(OBJECT(drc));
    }
}

sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
                                         uint32_t id)
{
    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
    char *prop_name;

    drc->id = id;
    drc->owner = owner;
    prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
                                spapr_drc_index(drc));
    object_property_add_child(owner, prop_name, OBJECT(drc), NULL);
    object_property_set_bool(OBJECT(drc), true, "realized", NULL);
    g_free(prop_name);

    /* PCI slot always start in a USABLE state, and stay there */
    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
        drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
    }

    return drc;
}

static void spapr_dr_connector_instance_init(Object *obj)
{
    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);

    object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
    object_property_add(obj, "index", "uint32", prop_get_index,
                        NULL, NULL, NULL, NULL);
    object_property_add(obj, "fdt", "struct", prop_get_fdt,
                        NULL, NULL, NULL, NULL);
}

static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
{
    DeviceClass *dk = DEVICE_CLASS(k);
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);

    dk->reset = reset;
    dk->realize = realize;
    dk->unrealize = unrealize;
    drck->set_isolation_state = set_isolation_state;
    drck->set_allocation_state = set_allocation_state;
    drck->release_pending = release_pending;
    /*
     * Reason: it crashes FIXME find and document the real reason
     */
    dk->user_creatable = false;
}

static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);

    drck->dr_entity_sense = physical_entity_sense;
}

static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);

    drck->dr_entity_sense = logical_entity_sense;
}

static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);

    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
    drck->typename = "CPU";
    drck->drc_name_prefix = "CPU ";
}

static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);

    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
    drck->typename = "28";
    drck->drc_name_prefix = "C";
}

static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
{
    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);

    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
    drck->typename = "MEM";
    drck->drc_name_prefix = "LMB ";
}

static const TypeInfo spapr_dr_connector_info = {
    .name          = TYPE_SPAPR_DR_CONNECTOR,
    .parent        = TYPE_DEVICE,
    .instance_size = sizeof(sPAPRDRConnector),
    .instance_init = spapr_dr_connector_instance_init,
    .class_size    = sizeof(sPAPRDRConnectorClass),
    .class_init    = spapr_dr_connector_class_init,
    .abstract      = true,
};

static const TypeInfo spapr_drc_physical_info = {
    .name          = TYPE_SPAPR_DRC_PHYSICAL,
    .parent        = TYPE_SPAPR_DR_CONNECTOR,
    .instance_size = sizeof(sPAPRDRConnector),
    .class_init    = spapr_drc_physical_class_init,
    .abstract      = true,
};

static const TypeInfo spapr_drc_logical_info = {
    .name          = TYPE_SPAPR_DRC_LOGICAL,
    .parent        = TYPE_SPAPR_DR_CONNECTOR,
    .instance_size = sizeof(sPAPRDRConnector),
    .class_init    = spapr_drc_logical_class_init,
    .abstract      = true,
};

static const TypeInfo spapr_drc_cpu_info = {
    .name          = TYPE_SPAPR_DRC_CPU,
    .parent        = TYPE_SPAPR_DRC_LOGICAL,
    .instance_size = sizeof(sPAPRDRConnector),
    .class_init    = spapr_drc_cpu_class_init,
};

static const TypeInfo spapr_drc_pci_info = {
    .name          = TYPE_SPAPR_DRC_PCI,
    .parent        = TYPE_SPAPR_DRC_PHYSICAL,
    .instance_size = sizeof(sPAPRDRConnector),
    .class_init    = spapr_drc_pci_class_init,
};

static const TypeInfo spapr_drc_lmb_info = {
    .name          = TYPE_SPAPR_DRC_LMB,
    .parent        = TYPE_SPAPR_DRC_LOGICAL,
    .instance_size = sizeof(sPAPRDRConnector),
    .class_init    = spapr_drc_lmb_class_init,
};

/* helper functions for external users */

sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
{
    Object *obj;
    char name[256];

    snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
    obj = object_resolve_path(name, NULL);

    return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
}

sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
{
    sPAPRDRConnectorClass *drck
        = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));

    return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
                              | (id & DRC_INDEX_ID_MASK));
}

/**
 * spapr_drc_populate_dt
 *
 * @fdt: libfdt device tree
 * @path: path in the DT to generate properties
 * @owner: parent Object/DeviceState for which to generate DRC
 *         descriptions for
 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
 *   to the types of DRCs to generate entries for
 *
 * generate OF properties to describe DRC topology/indices to guests
 *
 * as documented in PAPR+ v2.1, 13.5.2
 */
int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
                          uint32_t drc_type_mask)
{
    Object *root_container;
    ObjectProperty *prop;
    ObjectPropertyIterator iter;
    uint32_t drc_count = 0;
    GArray *drc_indexes, *drc_power_domains;
    GString *drc_names, *drc_types;
    int ret;

    /* the first entry of each properties is a 32-bit integer encoding
     * the number of elements in the array. we won't know this until
     * we complete the iteration through all the matching DRCs, but
     * reserve the space now and set the offsets accordingly so we
     * can fill them in later.
     */
    drc_indexes = g_array_new(false, true, sizeof(uint32_t));
    drc_indexes = g_array_set_size(drc_indexes, 1);
    drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
    drc_power_domains = g_array_set_size(drc_power_domains, 1);
    drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
    drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));

    /* aliases for all DRConnector objects will be rooted in QOM
     * composition tree at DRC_CONTAINER_PATH
     */
    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);

    object_property_iter_init(&iter, root_container);
    while ((prop = object_property_iter_next(&iter))) {
        Object *obj;
        sPAPRDRConnector *drc;
        sPAPRDRConnectorClass *drck;
        uint32_t drc_index, drc_power_domain;

        if (!strstart(prop->type, "link<", NULL)) {
            continue;
        }

        obj = object_property_get_link(root_container, prop->name, NULL);
        drc = SPAPR_DR_CONNECTOR(obj);
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

        if (owner && (drc->owner != owner)) {
            continue;
        }

        if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
            continue;
        }

        drc_count++;

        /* ibm,drc-indexes */
        drc_index = cpu_to_be32(spapr_drc_index(drc));
        g_array_append_val(drc_indexes, drc_index);

        /* ibm,drc-power-domains */
        drc_power_domain = cpu_to_be32(-1);
        g_array_append_val(drc_power_domains, drc_power_domain);

        /* ibm,drc-names */
        drc_names = g_string_append(drc_names, spapr_drc_name(drc));
        drc_names = g_string_insert_len(drc_names, -1, "\0", 1);

        /* ibm,drc-types */
        drc_types = g_string_append(drc_types, drck->typename);
        drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
    }

    /* now write the drc count into the space we reserved at the
     * beginning of the arrays previously
     */
    *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
    *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
    *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
    *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);

    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
                      drc_indexes->data,
                      drc_indexes->len * sizeof(uint32_t));
    if (ret) {
        error_report("Couldn't create ibm,drc-indexes property");
        goto out;
    }

    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
                      drc_power_domains->data,
                      drc_power_domains->len * sizeof(uint32_t));
    if (ret) {
        error_report("Couldn't finalize ibm,drc-power-domains property");
        goto out;
    }

    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
                      drc_names->str, drc_names->len);
    if (ret) {
        error_report("Couldn't finalize ibm,drc-names property");
        goto out;
    }

    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
                      drc_types->str, drc_types->len);
    if (ret) {
        error_report("Couldn't finalize ibm,drc-types property");
        goto out;
    }

out:
    g_array_free(drc_indexes, true);
    g_array_free(drc_power_domains, true);
    g_string_free(drc_names, true);
    g_string_free(drc_types, true);

    return ret;
}

/*
 * RTAS calls
 */

static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
{
    sPAPRDRConnector *drc = spapr_drc_by_index(idx);
    sPAPRDRConnectorClass *drck;

    if (!drc) {
        return RTAS_OUT_PARAM_ERROR;
    }

    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    return drck->set_isolation_state(drc, state);
}

static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
{
    sPAPRDRConnector *drc = spapr_drc_by_index(idx);
    sPAPRDRConnectorClass *drck;

    if (!drc) {
        return RTAS_OUT_PARAM_ERROR;
    }

    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    return drck->set_allocation_state(drc, state);
}

static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
{
    sPAPRDRConnector *drc = spapr_drc_by_index(idx);

    if (!drc) {
        return RTAS_OUT_PARAM_ERROR;
    }

    trace_spapr_drc_set_dr_indicator(idx, state);
    drc->dr_indicator = state;
    return RTAS_OUT_SUCCESS;
}

static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
                               uint32_t token,
                               uint32_t nargs, target_ulong args,
                               uint32_t nret, target_ulong rets)
{
    uint32_t type, idx, state;
    uint32_t ret = RTAS_OUT_SUCCESS;

    if (nargs != 3 || nret != 1) {
        ret = RTAS_OUT_PARAM_ERROR;
        goto out;
    }

    type = rtas_ld(args, 0);
    idx = rtas_ld(args, 1);
    state = rtas_ld(args, 2);

    switch (type) {
    case RTAS_SENSOR_TYPE_ISOLATION_STATE:
        ret = rtas_set_isolation_state(idx, state);
        break;
    case RTAS_SENSOR_TYPE_DR:
        ret = rtas_set_dr_indicator(idx, state);
        break;
    case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
        ret = rtas_set_allocation_state(idx, state);
        break;
    default:
        ret = RTAS_OUT_NOT_SUPPORTED;
    }

out:
    rtas_st(rets, 0, ret);
}

static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
                                  uint32_t token, uint32_t nargs,
                                  target_ulong args, uint32_t nret,
                                  target_ulong rets)
{
    uint32_t sensor_type;
    uint32_t sensor_index;
    uint32_t sensor_state = 0;
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t ret = RTAS_OUT_SUCCESS;

    if (nargs != 2 || nret != 2) {
        ret = RTAS_OUT_PARAM_ERROR;
        goto out;
    }

    sensor_type = rtas_ld(args, 0);
    sensor_index = rtas_ld(args, 1);

    if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
        /* currently only DR-related sensors are implemented */
        trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
                                                        sensor_type);
        ret = RTAS_OUT_NOT_SUPPORTED;
        goto out;
    }

    drc = spapr_drc_by_index(sensor_index);
    if (!drc) {
        trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
        ret = RTAS_OUT_PARAM_ERROR;
        goto out;
    }
    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    sensor_state = drck->dr_entity_sense(drc);

out:
    rtas_st(rets, 0, ret);
    rtas_st(rets, 1, sensor_state);
}

/* configure-connector work area offsets, int32_t units for field
 * indexes, bytes for field offset/len values.
 *
 * as documented by PAPR+ v2.7, 13.5.3.5
 */
#define CC_IDX_NODE_NAME_OFFSET 2
#define CC_IDX_PROP_NAME_OFFSET 2
#define CC_IDX_PROP_LEN 3
#define CC_IDX_PROP_DATA_OFFSET 4
#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
#define CC_WA_LEN 4096

static void configure_connector_st(target_ulong addr, target_ulong offset,
                                   const void *buf, size_t len)
{
    cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
                              buf, MIN(len, CC_WA_LEN - offset));
}

static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
                                         sPAPRMachineState *spapr,
                                         uint32_t token, uint32_t nargs,
                                         target_ulong args, uint32_t nret,
                                         target_ulong rets)
{
    uint64_t wa_addr;
    uint64_t wa_offset;
    uint32_t drc_index;
    sPAPRDRConnector *drc;
    sPAPRConfigureConnectorState *ccs;
    sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
    int rc;

    if (nargs != 2 || nret != 1) {
        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
        return;
    }

    wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);

    drc_index = rtas_ld(wa_addr, 0);
    drc = spapr_drc_by_index(drc_index);
    if (!drc) {
        trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
        rc = RTAS_OUT_PARAM_ERROR;
        goto out;
    }

    if (!drc->fdt) {
        trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
        rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
        goto out;
    }

    ccs = drc->ccs;
    if (!ccs) {
        ccs = g_new0(sPAPRConfigureConnectorState, 1);
        ccs->fdt_offset = drc->fdt_start_offset;
        drc->ccs = ccs;
    }

    do {
        uint32_t tag;
        const char *name;
        const struct fdt_property *prop;
        int fdt_offset_next, prop_len;

        tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next);

        switch (tag) {
        case FDT_BEGIN_NODE:
            ccs->fdt_depth++;
            name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL);

            /* provide the name of the next OF node */
            wa_offset = CC_VAL_DATA_OFFSET;
            rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
            resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
            break;
        case FDT_END_NODE:
            ccs->fdt_depth--;
            if (ccs->fdt_depth == 0) {
                sPAPRDRIsolationState state = drc->isolation_state;
                uint32_t drc_index = spapr_drc_index(drc);
                /* done sending the device tree, don't need to track
                 * the state anymore
                 */
                trace_spapr_drc_set_configured(drc_index);
                if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
                    drc->configured = true;
                } else {
                    /* guest should be not configuring an isolated device */
                    trace_spapr_drc_set_configured_skipping(drc_index);
                }
                g_free(ccs);
                drc->ccs = NULL;
                ccs = NULL;
                resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
            } else {
                resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
            }
            break;
        case FDT_PROP:
            prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset,
                                              &prop_len);
            name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));

            /* provide the name of the next OF property */
            wa_offset = CC_VAL_DATA_OFFSET;
            rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);

            /* provide the length and value of the OF property. data gets
             * placed immediately after NULL terminator of the OF property's
             * name string
             */
            wa_offset += strlen(name) + 1,
            rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
            rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
            configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
            resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
            break;
        case FDT_END:
            resp = SPAPR_DR_CC_RESPONSE_ERROR;
        default:
            /* keep seeking for an actionable tag */
            break;
        }
        if (ccs) {
            ccs->fdt_offset = fdt_offset_next;
        }
    } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);

    rc = resp;
out:
    rtas_st(rets, 0, rc);
}

static void spapr_drc_register_types(void)
{
    type_register_static(&spapr_dr_connector_info);
    type_register_static(&spapr_drc_physical_info);
    type_register_static(&spapr_drc_logical_info);
    type_register_static(&spapr_drc_cpu_info);
    type_register_static(&spapr_drc_pci_info);
    type_register_static(&spapr_drc_lmb_info);

    spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
                        rtas_set_indicator);
    spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
                        rtas_get_sensor_state);
    spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
                        rtas_ibm_configure_connector);
}
type_init(spapr_drc_register_types)