aboutsummaryrefslogtreecommitdiff
path: root/hw/ppc/ppc.c
blob: ce90b09003cd9c659e719a78acb55bc481f606b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
/*
 * QEMU generic PowerPC hardware System Emulator
 *
 * Copyright (c) 2003-2007 Jocelyn Mayer
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/ppc_e500.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/cpus.h"
#include "hw/timer/m48t59.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "hw/loader.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "trace.h"

//#define PPC_DEBUG_IRQ
//#define PPC_DEBUG_TB

#ifdef PPC_DEBUG_IRQ
#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#else
#  define LOG_IRQ(...) do { } while (0)
#endif


#ifdef PPC_DEBUG_TB
#  define LOG_TB(...) qemu_log(__VA_ARGS__)
#else
#  define LOG_TB(...) do { } while (0)
#endif

static void cpu_ppc_tb_stop (CPUPPCState *env);
static void cpu_ppc_tb_start (CPUPPCState *env);

void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    unsigned int old_pending = env->pending_interrupts;

    if (level) {
        env->pending_interrupts |= 1 << n_IRQ;
        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
    } else {
        env->pending_interrupts &= ~(1 << n_IRQ);
        if (env->pending_interrupts == 0) {
            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
        }
    }

    if (old_pending != env->pending_interrupts) {
#ifdef CONFIG_KVM
        kvmppc_set_interrupt(cpu, n_IRQ, level);
#endif
    }

    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
                "req %08x\n", __func__, env, n_IRQ, level,
                env->pending_interrupts, CPU(cpu)->interrupt_request);
}

/* PowerPC 6xx / 7xx internal IRQ controller */
static void ppc6xx_set_irq(void *opaque, int pin, int level)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    int cur_level;

    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
                env, pin, level);
    cur_level = (env->irq_input_state >> pin) & 1;
    /* Don't generate spurious events */
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
        CPUState *cs = CPU(cpu);

        switch (pin) {
        case PPC6xx_INPUT_TBEN:
            /* Level sensitive - active high */
            LOG_IRQ("%s: %s the time base\n",
                        __func__, level ? "start" : "stop");
            if (level) {
                cpu_ppc_tb_start(env);
            } else {
                cpu_ppc_tb_stop(env);
            }
        case PPC6xx_INPUT_INT:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the external IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
            break;
        case PPC6xx_INPUT_SMI:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
            break;
        case PPC6xx_INPUT_MCP:
            /* Negative edge sensitive */
            /* XXX: TODO: actual reaction may depends on HID0 status
             *            603/604/740/750: check HID0[EMCP]
             */
            if (cur_level == 1 && level == 0) {
                LOG_IRQ("%s: raise machine check state\n",
                            __func__);
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
            }
            break;
        case PPC6xx_INPUT_CKSTP_IN:
            /* Level sensitive - active low */
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
            /* XXX: Note that the only way to restart the CPU is to reset it */
            if (level) {
                LOG_IRQ("%s: stop the CPU\n", __func__);
                cs->halted = 1;
            }
            break;
        case PPC6xx_INPUT_HRESET:
            /* Level sensitive - active low */
            if (level) {
                LOG_IRQ("%s: reset the CPU\n", __func__);
                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
            }
            break;
        case PPC6xx_INPUT_SRESET:
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
            break;
        default:
            /* Unknown pin - do nothing */
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
            return;
        }
        if (level)
            env->irq_input_state |= 1 << pin;
        else
            env->irq_input_state &= ~(1 << pin);
    }
}

void ppc6xx_irq_init(CPUPPCState *env)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
                                                  PPC6xx_INPUT_NB);
}

#if defined(TARGET_PPC64)
/* PowerPC 970 internal IRQ controller */
static void ppc970_set_irq(void *opaque, int pin, int level)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    int cur_level;

    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
                env, pin, level);
    cur_level = (env->irq_input_state >> pin) & 1;
    /* Don't generate spurious events */
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
        CPUState *cs = CPU(cpu);

        switch (pin) {
        case PPC970_INPUT_INT:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the external IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
            break;
        case PPC970_INPUT_THINT:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
                        level);
            ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
            break;
        case PPC970_INPUT_MCP:
            /* Negative edge sensitive */
            /* XXX: TODO: actual reaction may depends on HID0 status
             *            603/604/740/750: check HID0[EMCP]
             */
            if (cur_level == 1 && level == 0) {
                LOG_IRQ("%s: raise machine check state\n",
                            __func__);
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
            }
            break;
        case PPC970_INPUT_CKSTP:
            /* Level sensitive - active low */
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
            if (level) {
                LOG_IRQ("%s: stop the CPU\n", __func__);
                cs->halted = 1;
            } else {
                LOG_IRQ("%s: restart the CPU\n", __func__);
                cs->halted = 0;
                qemu_cpu_kick(cs);
            }
            break;
        case PPC970_INPUT_HRESET:
            /* Level sensitive - active low */
            if (level) {
                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
            }
            break;
        case PPC970_INPUT_SRESET:
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
            break;
        case PPC970_INPUT_TBEN:
            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
                        level);
            /* XXX: TODO */
            break;
        default:
            /* Unknown pin - do nothing */
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
            return;
        }
        if (level)
            env->irq_input_state |= 1 << pin;
        else
            env->irq_input_state &= ~(1 << pin);
    }
}

void ppc970_irq_init(CPUPPCState *env)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
                                                  PPC970_INPUT_NB);
}

/* POWER7 internal IRQ controller */
static void power7_set_irq(void *opaque, int pin, int level)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;

    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
                env, pin, level);

    switch (pin) {
    case POWER7_INPUT_INT:
        /* Level sensitive - active high */
        LOG_IRQ("%s: set the external IRQ state to %d\n",
                __func__, level);
        ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
        break;
    default:
        /* Unknown pin - do nothing */
        LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
        return;
    }
    if (level) {
        env->irq_input_state |= 1 << pin;
    } else {
        env->irq_input_state &= ~(1 << pin);
    }
}

void ppcPOWER7_irq_init(CPUPPCState *env)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
                                                  POWER7_INPUT_NB);
}
#endif /* defined(TARGET_PPC64) */

/* PowerPC 40x internal IRQ controller */
static void ppc40x_set_irq(void *opaque, int pin, int level)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    int cur_level;

    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
                env, pin, level);
    cur_level = (env->irq_input_state >> pin) & 1;
    /* Don't generate spurious events */
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
        CPUState *cs = CPU(cpu);

        switch (pin) {
        case PPC40x_INPUT_RESET_SYS:
            if (level) {
                LOG_IRQ("%s: reset the PowerPC system\n",
                            __func__);
                ppc40x_system_reset(cpu);
            }
            break;
        case PPC40x_INPUT_RESET_CHIP:
            if (level) {
                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
                ppc40x_chip_reset(cpu);
            }
            break;
        case PPC40x_INPUT_RESET_CORE:
            /* XXX: TODO: update DBSR[MRR] */
            if (level) {
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
                ppc40x_core_reset(cpu);
            }
            break;
        case PPC40x_INPUT_CINT:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
            break;
        case PPC40x_INPUT_INT:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the external IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
            break;
        case PPC40x_INPUT_HALT:
            /* Level sensitive - active low */
            if (level) {
                LOG_IRQ("%s: stop the CPU\n", __func__);
                cs->halted = 1;
            } else {
                LOG_IRQ("%s: restart the CPU\n", __func__);
                cs->halted = 0;
                qemu_cpu_kick(cs);
            }
            break;
        case PPC40x_INPUT_DEBUG:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the debug pin state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
            break;
        default:
            /* Unknown pin - do nothing */
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
            return;
        }
        if (level)
            env->irq_input_state |= 1 << pin;
        else
            env->irq_input_state &= ~(1 << pin);
    }
}

void ppc40x_irq_init(CPUPPCState *env)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
                                                  cpu, PPC40x_INPUT_NB);
}

/* PowerPC E500 internal IRQ controller */
static void ppce500_set_irq(void *opaque, int pin, int level)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    int cur_level;

    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
                env, pin, level);
    cur_level = (env->irq_input_state >> pin) & 1;
    /* Don't generate spurious events */
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
        switch (pin) {
        case PPCE500_INPUT_MCK:
            if (level) {
                LOG_IRQ("%s: reset the PowerPC system\n",
                            __func__);
                qemu_system_reset_request();
            }
            break;
        case PPCE500_INPUT_RESET_CORE:
            if (level) {
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
            }
            break;
        case PPCE500_INPUT_CINT:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
            break;
        case PPCE500_INPUT_INT:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the core IRQ state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
            break;
        case PPCE500_INPUT_DEBUG:
            /* Level sensitive - active high */
            LOG_IRQ("%s: set the debug pin state to %d\n",
                        __func__, level);
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
            break;
        default:
            /* Unknown pin - do nothing */
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
            return;
        }
        if (level)
            env->irq_input_state |= 1 << pin;
        else
            env->irq_input_state &= ~(1 << pin);
    }
}

void ppce500_irq_init(CPUPPCState *env)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
                                                  cpu, PPCE500_INPUT_NB);
}

/* Enable or Disable the E500 EPR capability */
void ppce500_set_mpic_proxy(bool enabled)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);

        cpu->env.mpic_proxy = enabled;
        if (kvm_enabled()) {
            kvmppc_set_mpic_proxy(cpu, enabled);
        }
    }
}

/*****************************************************************************/
/* PowerPC time base and decrementer emulation */

uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
{
    /* TB time in tb periods */
    return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
}

uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    if (kvm_enabled()) {
        return env->spr[SPR_TBL];
    }

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);

    return tb;
}

static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);

    return tb >> 32;
}

uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
{
    if (kvm_enabled()) {
        return env->spr[SPR_TBU];
    }

    return _cpu_ppc_load_tbu(env);
}

static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
                                    int64_t *tb_offsetp, uint64_t value)
{
    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
                __func__, value, *tb_offsetp);
}

void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
    tb &= 0xFFFFFFFF00000000ULL;
    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                     &tb_env->tb_offset, tb | (uint64_t)value);
}

static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
    tb &= 0x00000000FFFFFFFFULL;
    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
}

void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
{
    _cpu_ppc_store_tbu(env, value);
}

uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);

    return tb;
}

uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);

    return tb >> 32;
}

void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
    tb &= 0xFFFFFFFF00000000ULL;
    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                     &tb_env->atb_offset, tb | (uint64_t)value);
}

void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb;

    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
    tb &= 0x00000000FFFFFFFFULL;
    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
}

static void cpu_ppc_tb_stop (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb, atb, vmclk;

    /* If the time base is already frozen, do nothing */
    if (tb_env->tb_freq != 0) {
        vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
        /* Get the time base */
        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
        /* Get the alternate time base */
        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
        /* Store the time base value (ie compute the current offset) */
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
        /* Store the alternate time base value (compute the current offset) */
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
        /* Set the time base frequency to zero */
        tb_env->tb_freq = 0;
        /* Now, the time bases are frozen to tb_offset / atb_offset value */
    }
}

static void cpu_ppc_tb_start (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t tb, atb, vmclk;

    /* If the time base is not frozen, do nothing */
    if (tb_env->tb_freq == 0) {
        vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
        /* Get the time base from tb_offset */
        tb = tb_env->tb_offset;
        /* Get the alternate time base from atb_offset */
        atb = tb_env->atb_offset;
        /* Restore the tb frequency from the decrementer frequency */
        tb_env->tb_freq = tb_env->decr_freq;
        /* Store the time base value */
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
        /* Store the alternate time base value */
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
    }
}

bool ppc_decr_clear_on_delivery(CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
    return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
}

static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint32_t decr;
    int64_t diff;

    diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    if (diff >= 0) {
        decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
    } else if (tb_env->flags & PPC_TIMER_BOOKE) {
        decr = 0;
    }  else {
        decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
    }
    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);

    return decr;
}

uint32_t cpu_ppc_load_decr (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;

    if (kvm_enabled()) {
        return env->spr[SPR_DECR];
    }

    return _cpu_ppc_load_decr(env, tb_env->decr_next);
}

uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;

    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
}

uint64_t cpu_ppc_load_purr (CPUPPCState *env)
{
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t diff;

    diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;

    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
}

/* When decrementer expires,
 * all we need to do is generate or queue a CPU exception
 */
static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
{
    /* Raise it */
    LOG_TB("raise decrementer exception\n");
    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
}

static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
{
    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
}

static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
{
    /* Raise it */
    LOG_TB("raise decrementer exception\n");
    ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
}

static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
{
    ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
}

static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
                                 QEMUTimer *timer,
                                 void (*raise_excp)(void *),
                                 void (*lower_excp)(PowerPCCPU *),
                                 uint32_t decr, uint32_t value)
{
    CPUPPCState *env = &cpu->env;
    ppc_tb_t *tb_env = env->tb_env;
    uint64_t now, next;

    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
                decr, value);

    if (kvm_enabled()) {
        /* KVM handles decrementer exceptions, we don't need our own timer */
        return;
    }

    /*
     * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
     * interrupt.
     *
     * If we get a really small DEC value, we can assume that by the time we
     * handled it we should inject an interrupt already.
     *
     * On MSB level based DEC implementations the MSB always means the interrupt
     * is pending, so raise it on those.
     *
     * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
     * an edge interrupt, so raise it here too.
     */
    if ((value < 3) ||
        ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
        ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
          && !(decr & 0x80000000))) {
        (*raise_excp)(cpu);
        return;
    }

    /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
    if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
        (*lower_excp)(cpu);
    }

    /* Calculate the next timer event */
    now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
    *nextp = next;

    /* Adjust timer */
    timer_mod(timer, next);
}

static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
                                       uint32_t value)
{
    ppc_tb_t *tb_env = cpu->env.tb_env;

    __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
                         tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
                         value);
}

void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
}

static void cpu_ppc_decr_cb(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    cpu_ppc_decr_excp(cpu);
}

static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
                                        uint32_t value)
{
    ppc_tb_t *tb_env = cpu->env.tb_env;

    if (tb_env->hdecr_timer != NULL) {
        __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
                             tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
                             hdecr, value);
    }
}

void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
}

static void cpu_ppc_hdecr_cb(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    cpu_ppc_hdecr_excp(cpu);
}

static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
{
    ppc_tb_t *tb_env = cpu->env.tb_env;

    tb_env->purr_load = value;
    tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
}

static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
{
    CPUPPCState *env = opaque;
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    ppc_tb_t *tb_env = env->tb_env;

    tb_env->tb_freq = freq;
    tb_env->decr_freq = freq;
    /* There is a bug in Linux 2.4 kernels:
     * if a decrementer exception is pending when it enables msr_ee at startup,
     * it's not ready to handle it...
     */
    _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
    _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
    cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
}

static void timebase_pre_save(void *opaque)
{
    PPCTimebase *tb = opaque;
    uint64_t ticks = cpu_get_host_ticks();
    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);

    if (!first_ppc_cpu->env.tb_env) {
        error_report("No timebase object");
        return;
    }

    tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
    /*
     * tb_offset is only expected to be changed by migration so
     * there is no need to update it from KVM here
     */
    tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
}

static int timebase_post_load(void *opaque, int version_id)
{
    PPCTimebase *tb_remote = opaque;
    CPUState *cpu;
    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
    int64_t tb_off_adj, tb_off, ns_diff;
    int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
    unsigned long freq;

    if (!first_ppc_cpu->env.tb_env) {
        error_report("No timebase object");
        return -1;
    }

    freq = first_ppc_cpu->env.tb_env->tb_freq;
    /*
     * Calculate timebase on the destination side of migration.
     * The destination timebase must be not less than the source timebase.
     * We try to adjust timebase by downtime if host clocks are not
     * too much out of sync (1 second for now).
     */
    host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
    ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
    migration_duration_ns = MIN(NANOSECONDS_PER_SECOND, ns_diff);
    migration_duration_tb = muldiv64(migration_duration_ns, freq,
                                     NANOSECONDS_PER_SECOND);
    guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);

    tb_off_adj = guest_tb - cpu_get_host_ticks();

    tb_off = first_ppc_cpu->env.tb_env->tb_offset;
    trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
                        (tb_off_adj - tb_off) / freq);

    /* Set new offset to all CPUs */
    CPU_FOREACH(cpu) {
        PowerPCCPU *pcpu = POWERPC_CPU(cpu);
        pcpu->env.tb_env->tb_offset = tb_off_adj;
    }

    return 0;
}

const VMStateDescription vmstate_ppc_timebase = {
    .name = "timebase",
    .version_id = 1,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .pre_save = timebase_pre_save,
    .post_load = timebase_post_load,
    .fields      = (VMStateField []) {
        VMSTATE_UINT64(guest_timebase, PPCTimebase),
        VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
        VMSTATE_END_OF_LIST()
    },
};

/* Set up (once) timebase frequency (in Hz) */
clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    ppc_tb_t *tb_env;

    tb_env = g_malloc0(sizeof(ppc_tb_t));
    env->tb_env = tb_env;
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
    if (env->insns_flags & PPC_SEGMENT_64B) {
        /* All Book3S 64bit CPUs implement level based DEC logic */
        tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
    }
    /* Create new timer */
    tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
    if (0) {
        /* XXX: find a suitable condition to enable the hypervisor decrementer
         */
        tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
                                                cpu);
    } else {
        tb_env->hdecr_timer = NULL;
    }
    cpu_ppc_set_tb_clk(env, freq);

    return &cpu_ppc_set_tb_clk;
}

/* Specific helpers for POWER & PowerPC 601 RTC */
#if 0
static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
{
    return cpu_ppc_tb_init(env, 7812500);
}
#endif

void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
{
    _cpu_ppc_store_tbu(env, value);
}

uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
{
    return _cpu_ppc_load_tbu(env);
}

void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
{
    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
}

uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
{
    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
}

/*****************************************************************************/
/* PowerPC 40x timers */

/* PIT, FIT & WDT */
typedef struct ppc40x_timer_t ppc40x_timer_t;
struct ppc40x_timer_t {
    uint64_t pit_reload;  /* PIT auto-reload value        */
    uint64_t fit_next;    /* Tick for next FIT interrupt  */
    QEMUTimer *fit_timer;
    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
    QEMUTimer *wdt_timer;

    /* 405 have the PIT, 440 have a DECR.  */
    unsigned int decr_excp;
};

/* Fixed interval timer */
static void cpu_4xx_fit_cb (void *opaque)
{
    PowerPCCPU *cpu;
    CPUPPCState *env;
    ppc_tb_t *tb_env;
    ppc40x_timer_t *ppc40x_timer;
    uint64_t now, next;

    env = opaque;
    cpu = ppc_env_get_cpu(env);
    tb_env = env->tb_env;
    ppc40x_timer = tb_env->opaque;
    now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
    case 0:
        next = 1 << 9;
        break;
    case 1:
        next = 1 << 13;
        break;
    case 2:
        next = 1 << 17;
        break;
    case 3:
        next = 1 << 21;
        break;
    default:
        /* Cannot occur, but makes gcc happy */
        return;
    }
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
    if (next == now)
        next++;
    timer_mod(ppc40x_timer->fit_timer, next);
    env->spr[SPR_40x_TSR] |= 1 << 26;
    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
        ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
    }
    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
}

/* Programmable interval timer */
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
{
    ppc40x_timer_t *ppc40x_timer;
    uint64_t now, next;

    ppc40x_timer = tb_env->opaque;
    if (ppc40x_timer->pit_reload <= 1 ||
        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
        /* Stop PIT */
        LOG_TB("%s: stop PIT\n", __func__);
        timer_del(tb_env->decr_timer);
    } else {
        LOG_TB("%s: start PIT %016" PRIx64 "\n",
                    __func__, ppc40x_timer->pit_reload);
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
        next = now + muldiv64(ppc40x_timer->pit_reload,
                              get_ticks_per_sec(), tb_env->decr_freq);
        if (is_excp)
            next += tb_env->decr_next - now;
        if (next == now)
            next++;
        timer_mod(tb_env->decr_timer, next);
        tb_env->decr_next = next;
    }
}

static void cpu_4xx_pit_cb (void *opaque)
{
    PowerPCCPU *cpu;
    CPUPPCState *env;
    ppc_tb_t *tb_env;
    ppc40x_timer_t *ppc40x_timer;

    env = opaque;
    cpu = ppc_env_get_cpu(env);
    tb_env = env->tb_env;
    ppc40x_timer = tb_env->opaque;
    env->spr[SPR_40x_TSR] |= 1 << 27;
    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
        ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
    }
    start_stop_pit(env, tb_env, 1);
    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
           "%016" PRIx64 "\n", __func__,
           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
           ppc40x_timer->pit_reload);
}

/* Watchdog timer */
static void cpu_4xx_wdt_cb (void *opaque)
{
    PowerPCCPU *cpu;
    CPUPPCState *env;
    ppc_tb_t *tb_env;
    ppc40x_timer_t *ppc40x_timer;
    uint64_t now, next;

    env = opaque;
    cpu = ppc_env_get_cpu(env);
    tb_env = env->tb_env;
    ppc40x_timer = tb_env->opaque;
    now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
    case 0:
        next = 1 << 17;
        break;
    case 1:
        next = 1 << 21;
        break;
    case 2:
        next = 1 << 25;
        break;
    case 3:
        next = 1 << 29;
        break;
    default:
        /* Cannot occur, but makes gcc happy */
        return;
    }
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
    if (next == now)
        next++;
    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
    case 0x0:
    case 0x1:
        timer_mod(ppc40x_timer->wdt_timer, next);
        ppc40x_timer->wdt_next = next;
        env->spr[SPR_40x_TSR] |= 1U << 31;
        break;
    case 0x2:
        timer_mod(ppc40x_timer->wdt_timer, next);
        ppc40x_timer->wdt_next = next;
        env->spr[SPR_40x_TSR] |= 1 << 30;
        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
            ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
        }
        break;
    case 0x3:
        env->spr[SPR_40x_TSR] &= ~0x30000000;
        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
        case 0x0:
            /* No reset */
            break;
        case 0x1: /* Core reset */
            ppc40x_core_reset(cpu);
            break;
        case 0x2: /* Chip reset */
            ppc40x_chip_reset(cpu);
            break;
        case 0x3: /* System reset */
            ppc40x_system_reset(cpu);
            break;
        }
    }
}

void store_40x_pit (CPUPPCState *env, target_ulong val)
{
    ppc_tb_t *tb_env;
    ppc40x_timer_t *ppc40x_timer;

    tb_env = env->tb_env;
    ppc40x_timer = tb_env->opaque;
    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
    ppc40x_timer->pit_reload = val;
    start_stop_pit(env, tb_env, 0);
}

target_ulong load_40x_pit (CPUPPCState *env)
{
    return cpu_ppc_load_decr(env);
}

static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
{
    CPUPPCState *env = opaque;
    ppc_tb_t *tb_env = env->tb_env;

    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
                freq);
    tb_env->tb_freq = freq;
    tb_env->decr_freq = freq;
    /* XXX: we should also update all timers */
}

clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
                                  unsigned int decr_excp)
{
    ppc_tb_t *tb_env;
    ppc40x_timer_t *ppc40x_timer;

    tb_env = g_malloc0(sizeof(ppc_tb_t));
    env->tb_env = tb_env;
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
    ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
    tb_env->tb_freq = freq;
    tb_env->decr_freq = freq;
    tb_env->opaque = ppc40x_timer;
    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
    if (ppc40x_timer != NULL) {
        /* We use decr timer for PIT */
        tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
        ppc40x_timer->fit_timer =
            timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
        ppc40x_timer->wdt_timer =
            timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
        ppc40x_timer->decr_excp = decr_excp;
    }

    return &ppc_40x_set_tb_clk;
}

/*****************************************************************************/
/* Embedded PowerPC Device Control Registers */
typedef struct ppc_dcrn_t ppc_dcrn_t;
struct ppc_dcrn_t {
    dcr_read_cb dcr_read;
    dcr_write_cb dcr_write;
    void *opaque;
};

/* XXX: on 460, DCR addresses are 32 bits wide,
 *      using DCRIPR to get the 22 upper bits of the DCR address
 */
#define DCRN_NB 1024
struct ppc_dcr_t {
    ppc_dcrn_t dcrn[DCRN_NB];
    int (*read_error)(int dcrn);
    int (*write_error)(int dcrn);
};

int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
{
    ppc_dcrn_t *dcr;

    if (dcrn < 0 || dcrn >= DCRN_NB)
        goto error;
    dcr = &dcr_env->dcrn[dcrn];
    if (dcr->dcr_read == NULL)
        goto error;
    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);

    return 0;

 error:
    if (dcr_env->read_error != NULL)
        return (*dcr_env->read_error)(dcrn);

    return -1;
}

int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
{
    ppc_dcrn_t *dcr;

    if (dcrn < 0 || dcrn >= DCRN_NB)
        goto error;
    dcr = &dcr_env->dcrn[dcrn];
    if (dcr->dcr_write == NULL)
        goto error;
    (*dcr->dcr_write)(dcr->opaque, dcrn, val);

    return 0;

 error:
    if (dcr_env->write_error != NULL)
        return (*dcr_env->write_error)(dcrn);

    return -1;
}

int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
{
    ppc_dcr_t *dcr_env;
    ppc_dcrn_t *dcr;

    dcr_env = env->dcr_env;
    if (dcr_env == NULL)
        return -1;
    if (dcrn < 0 || dcrn >= DCRN_NB)
        return -1;
    dcr = &dcr_env->dcrn[dcrn];
    if (dcr->opaque != NULL ||
        dcr->dcr_read != NULL ||
        dcr->dcr_write != NULL)
        return -1;
    dcr->opaque = opaque;
    dcr->dcr_read = dcr_read;
    dcr->dcr_write = dcr_write;

    return 0;
}

int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
                  int (*write_error)(int dcrn))
{
    ppc_dcr_t *dcr_env;

    dcr_env = g_malloc0(sizeof(ppc_dcr_t));
    dcr_env->read_error = read_error;
    dcr_env->write_error = write_error;
    env->dcr_env = dcr_env;

    return 0;
}

/*****************************************************************************/
/* Debug port */
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
{
    addr &= 0xF;
    switch (addr) {
    case 0:
        printf("%c", val);
        break;
    case 1:
        printf("\n");
        fflush(stdout);
        break;
    case 2:
        printf("Set loglevel to %04" PRIx32 "\n", val);
        qemu_set_log(val | 0x100);
        break;
    }
}

/* CPU device-tree ID helpers */
int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
{
    return cpu->cpu_dt_id;
}

PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);

        if (cpu->cpu_dt_id == cpu_dt_id) {
            return cpu;
        }
    }

    return NULL;
}