aboutsummaryrefslogtreecommitdiff
path: root/hw/pl190.c
blob: 64385b89da89fcfa595e41310fbfd9f5e3af8c40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/* 
 * Arm PrimeCell PL190 Vector Interrupt Controller
 *
 * Copyright (c) 2006 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licenced under the GPL.
 */

#include "vl.h"
#include "arm_pic.h"

/* The number of virtual priority levels.  16 user vectors plus the
   unvectored IRQ.  Chained interrupts would require an additional level
   if implemented.  */

#define PL190_NUM_PRIO 17

typedef struct {
    uint32_t base;
    DisplayState *ds;
    uint32_t level;
    uint32_t soft_level;
    uint32_t irq_enable;
    uint32_t fiq_select;
    uint32_t default_addr;
    uint8_t vect_control[16];
    uint32_t vect_addr[PL190_NUM_PRIO];
    /* Mask containing interrupts with higher priority than this one.  */
    uint32_t prio_mask[PL190_NUM_PRIO + 1];
    int protected;
    /* Current priority level.  */
    int priority;
    int prev_prio[PL190_NUM_PRIO];
    qemu_irq irq;
    qemu_irq fiq;
} pl190_state;

static const unsigned char pl190_id[] =
{ 0x90, 0x11, 0x04, 0x00, 0x0D, 0xf0, 0x05, 0xb1 };

static inline uint32_t pl190_irq_level(pl190_state *s)
{
    return (s->level | s->soft_level) & s->irq_enable & ~s->fiq_select;
}

/* Update interrupts.  */
static void pl190_update(pl190_state *s)
{
    uint32_t level = pl190_irq_level(s);
    int set;

    set = (level & s->prio_mask[s->priority]) != 0;
    qemu_set_irq(s->irq, set);
    set = ((s->level | s->soft_level) & s->fiq_select) != 0;
    qemu_set_irq(s->fiq, set);
}

static void pl190_set_irq(void *opaque, int irq, int level)
{
    pl190_state *s = (pl190_state *)opaque;

    if (level)
        s->level |= 1u << irq;
    else
        s->level &= ~(1u << irq);
    pl190_update(s);
}

static void pl190_update_vectors(pl190_state *s)
{
    uint32_t mask;
    int i;
    int n;

    mask = 0;
    for (i = 0; i < 16; i++)
      {
        s->prio_mask[i] = mask;
        if (s->vect_control[i] & 0x20)
          {
            n = s->vect_control[i] & 0x1f;
            mask |= 1 << n;
          }
      }
    s->prio_mask[16] = mask;
    pl190_update(s);
}

static uint32_t pl190_read(void *opaque, target_phys_addr_t offset)
{
    pl190_state *s = (pl190_state *)opaque;
    int i;

    offset -= s->base;
    if (offset >= 0xfe0 && offset < 0x1000) {
        return pl190_id[(offset - 0xfe0) >> 2];
    }
    if (offset >= 0x100 && offset < 0x140) {
        return s->vect_addr[(offset - 0x100) >> 2];
    }
    if (offset >= 0x200 && offset < 0x240) {
        return s->vect_control[(offset - 0x200) >> 2];
    }
    switch (offset >> 2) {
    case 0: /* IRQSTATUS */
        return pl190_irq_level(s);
    case 1: /* FIQSATUS */
        return (s->level | s->soft_level) & s->fiq_select;
    case 2: /* RAWINTR */
        return s->level | s->soft_level;
    case 3: /* INTSELECT */
        return s->fiq_select;
    case 4: /* INTENABLE */
        return s->irq_enable;
    case 6: /* SOFTINT */
        return s->soft_level;
    case 8: /* PROTECTION */
        return s->protected;
    case 12: /* VECTADDR */
        /* Read vector address at the start of an ISR.  Increases the
           current priority level to that of the current interrupt.  */
        for (i = 0; i < s->priority; i++)
          {
            if ((s->level | s->soft_level) & s->prio_mask[i])
              break;
          }
        /* Reading this value with no pending interrupts is undefined.
           We return the default address.  */
        if (i == PL190_NUM_PRIO)
          return s->vect_addr[16];
        if (i < s->priority)
          {
            s->prev_prio[i] = s->priority;
            s->priority = i;
            pl190_update(s);
          }
        return s->vect_addr[s->priority];
    case 13: /* DEFVECTADDR */
        return s->vect_addr[16];
    default:
        cpu_abort (cpu_single_env, "pl190_read: Bad offset %x\n", offset);
        return 0;
    }
}

static void pl190_write(void *opaque, target_phys_addr_t offset, uint32_t val)
{
    pl190_state *s = (pl190_state *)opaque;

    offset -= s->base;
    if (offset >= 0x100 && offset < 0x140) {
        s->vect_addr[(offset - 0x100) >> 2] = val;
        pl190_update_vectors(s);
        return;
    }
    if (offset >= 0x200 && offset < 0x240) {
        s->vect_control[(offset - 0x200) >> 2] = val;
        pl190_update_vectors(s);
        return;
    }
    switch (offset >> 2) {
    case 0: /* SELECT */
        /* This is a readonly register, but linux tries to write to it
           anyway.  Ignore the write.  */
        break;
    case 3: /* INTSELECT */
        s->fiq_select = val;
        break;
    case 4: /* INTENABLE */
        s->irq_enable |= val;
        break;
    case 5: /* INTENCLEAR */
        s->irq_enable &= ~val;
        break;
    case 6: /* SOFTINT */
        s->soft_level |= val;
        break;
    case 7: /* SOFTINTCLEAR */
        s->soft_level &= ~val;
        break;
    case 8: /* PROTECTION */
        /* TODO: Protection (supervisor only access) is not implemented.  */
        s->protected = val & 1;
        break;
    case 12: /* VECTADDR */
        /* Restore the previous priority level.  The value written is
           ignored.  */
        if (s->priority < PL190_NUM_PRIO)
            s->priority = s->prev_prio[s->priority];
        break;
    case 13: /* DEFVECTADDR */
        s->default_addr = val;
        break;
    case 0xc0: /* ITCR */
        if (val)
            cpu_abort(cpu_single_env, "pl190: Test mode not implemented\n");
        break;
    default:
        cpu_abort(cpu_single_env, "pl190_write: Bad offset %x\n", offset);
        return;
    }
    pl190_update(s);
}

static CPUReadMemoryFunc *pl190_readfn[] = {
   pl190_read,
   pl190_read,
   pl190_read
};

static CPUWriteMemoryFunc *pl190_writefn[] = {
   pl190_write,
   pl190_write,
   pl190_write
};

void pl190_reset(pl190_state *s)
{
  int i;

  for (i = 0; i < 16; i++)
    {
      s->vect_addr[i] = 0;
      s->vect_control[i] = 0;
    }
  s->vect_addr[16] = 0;
  s->prio_mask[17] = 0xffffffff;
  s->priority = PL190_NUM_PRIO;
  pl190_update_vectors(s);
}

qemu_irq *pl190_init(uint32_t base, qemu_irq irq, qemu_irq fiq)
{
    pl190_state *s;
    qemu_irq *qi;
    int iomemtype;

    s = (pl190_state *)qemu_mallocz(sizeof(pl190_state));
    iomemtype = cpu_register_io_memory(0, pl190_readfn,
                                       pl190_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    qi = qemu_allocate_irqs(pl190_set_irq, s, 32);
    s->base = base;
    s->irq = irq;
    s->fiq = fiq;
    pl190_reset(s);
    /* ??? Save/restore.  */
    return qi;
}