1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
/*
* ARM Versatile/PB PCI host controller
*
* Copyright (c) 2006-2009 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the LGPL.
*/
#include "hw/sysbus.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci/pci_host.h"
#include "exec/address-spaces.h"
/* Old and buggy versions of QEMU used the wrong mapping from
* PCI IRQs to system interrupt lines. Unfortunately the Linux
* kernel also had the corresponding bug in setting up interrupts
* (so older kernels work on QEMU and not on real hardware).
* We automatically detect these broken kernels and flip back
* to the broken irq mapping by spotting guest writes to the
* PCI_INTERRUPT_LINE register to see where the guest thinks
* interrupts are going to be routed. So we start in state
* ASSUME_OK on reset, and transition to either BROKEN or
* FORCE_OK at the first write to an INTERRUPT_LINE register for
* a slot where broken and correct interrupt mapping would differ.
* Once in either BROKEN or FORCE_OK we never transition again;
* this allows a newer kernel to use the INTERRUPT_LINE
* registers arbitrarily once it has indicated that it isn't
* broken in its init code somewhere.
*
* Unfortunately we have to cope with multiple different
* variants on the broken kernel behaviour:
* phase I (before kernel commit 1bc39ac5d) kernels assume old
* QEMU behaviour, so they use IRQ 27 for all slots
* phase II (1bc39ac5d and later, but before e3e92a7be6) kernels
* swizzle IRQs between slots, but do it wrongly, so they
* work only for every fourth PCI card, and only if (like old
* QEMU) the PCI host device is at slot 0 rather than where
* the h/w actually puts it
* phase III (e3e92a7be6 and later) kernels still swizzle IRQs between
* slots wrongly, but add a fixed offset of 64 to everything
* they write to PCI_INTERRUPT_LINE.
*
* We live in hope of a mythical phase IV kernel which might
* actually behave in ways that work on the hardware. Such a
* kernel should probably start off by writing some value neither
* 27 nor 91 to slot zero's PCI_INTERRUPT_LINE register to
* disable the autodetection. After that it can do what it likes.
*
* Slot % 4 | hw | I | II | III
* -------------------------------
* 0 | 29 | 27 | 27 | 91
* 1 | 30 | 27 | 28 | 92
* 2 | 27 | 27 | 29 | 93
* 3 | 28 | 27 | 30 | 94
*
* Since our autodetection is not perfect we also provide a
* property so the user can make us start in BROKEN or FORCE_OK
* on reset if they know they have a bad or good kernel.
*/
enum {
PCI_VPB_IRQMAP_ASSUME_OK,
PCI_VPB_IRQMAP_BROKEN,
PCI_VPB_IRQMAP_FORCE_OK,
};
typedef struct {
PCIHostState parent_obj;
qemu_irq irq[4];
MemoryRegion controlregs;
MemoryRegion mem_config;
MemoryRegion mem_config2;
/* Containers representing the PCI address spaces */
MemoryRegion pci_io_space;
MemoryRegion pci_mem_space;
/* Alias regions into PCI address spaces which we expose as sysbus regions.
* The offsets into pci_mem_space are controlled by the imap registers.
*/
MemoryRegion pci_io_window;
MemoryRegion pci_mem_window[3];
PCIBus pci_bus;
PCIDevice pci_dev;
/* Constant for life of device: */
int realview;
uint32_t mem_win_size[3];
uint8_t irq_mapping_prop;
/* Variable state: */
uint32_t imap[3];
uint32_t smap[3];
uint32_t selfid;
uint32_t flags;
uint8_t irq_mapping;
} PCIVPBState;
static void pci_vpb_update_window(PCIVPBState *s, int i)
{
/* Adjust the offset of the alias region we use for
* the memory window i to account for a change in the
* value of the corresponding IMAP register.
* Note that the semantics of the IMAP register differ
* for realview and versatile variants of the controller.
*/
hwaddr offset;
if (s->realview) {
/* Top bits of register (masked according to window size) provide
* top bits of PCI address.
*/
offset = s->imap[i] & ~(s->mem_win_size[i] - 1);
} else {
/* Bottom 4 bits of register provide top 4 bits of PCI address */
offset = s->imap[i] << 28;
}
memory_region_set_alias_offset(&s->pci_mem_window[i], offset);
}
static void pci_vpb_update_all_windows(PCIVPBState *s)
{
/* Update all alias windows based on the current register state */
int i;
for (i = 0; i < 3; i++) {
pci_vpb_update_window(s, i);
}
}
static int pci_vpb_post_load(void *opaque, int version_id)
{
PCIVPBState *s = opaque;
pci_vpb_update_all_windows(s);
return 0;
}
static const VMStateDescription pci_vpb_vmstate = {
.name = "versatile-pci",
.version_id = 1,
.minimum_version_id = 1,
.post_load = pci_vpb_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(imap, PCIVPBState, 3),
VMSTATE_UINT32_ARRAY(smap, PCIVPBState, 3),
VMSTATE_UINT32(selfid, PCIVPBState),
VMSTATE_UINT32(flags, PCIVPBState),
VMSTATE_UINT8(irq_mapping, PCIVPBState),
VMSTATE_END_OF_LIST()
}
};
#define TYPE_VERSATILE_PCI "versatile_pci"
#define PCI_VPB(obj) \
OBJECT_CHECK(PCIVPBState, (obj), TYPE_VERSATILE_PCI)
#define TYPE_VERSATILE_PCI_HOST "versatile_pci_host"
#define PCI_VPB_HOST(obj) \
OBJECT_CHECK(PCIDevice, (obj), TYPE_VERSATILE_PCIHOST)
typedef enum {
PCI_IMAP0 = 0x0,
PCI_IMAP1 = 0x4,
PCI_IMAP2 = 0x8,
PCI_SELFID = 0xc,
PCI_FLAGS = 0x10,
PCI_SMAP0 = 0x14,
PCI_SMAP1 = 0x18,
PCI_SMAP2 = 0x1c,
} PCIVPBControlRegs;
static void pci_vpb_reg_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PCIVPBState *s = opaque;
switch (addr) {
case PCI_IMAP0:
case PCI_IMAP1:
case PCI_IMAP2:
{
int win = (addr - PCI_IMAP0) >> 2;
s->imap[win] = val;
pci_vpb_update_window(s, win);
break;
}
case PCI_SELFID:
s->selfid = val;
break;
case PCI_FLAGS:
s->flags = val;
break;
case PCI_SMAP0:
case PCI_SMAP1:
case PCI_SMAP2:
{
int win = (addr - PCI_SMAP0) >> 2;
s->smap[win] = val;
break;
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"pci_vpb_reg_write: Bad offset %x\n", (int)addr);
break;
}
}
static uint64_t pci_vpb_reg_read(void *opaque, hwaddr addr,
unsigned size)
{
PCIVPBState *s = opaque;
switch (addr) {
case PCI_IMAP0:
case PCI_IMAP1:
case PCI_IMAP2:
{
int win = (addr - PCI_IMAP0) >> 2;
return s->imap[win];
}
case PCI_SELFID:
return s->selfid;
case PCI_FLAGS:
return s->flags;
case PCI_SMAP0:
case PCI_SMAP1:
case PCI_SMAP2:
{
int win = (addr - PCI_SMAP0) >> 2;
return s->smap[win];
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"pci_vpb_reg_read: Bad offset %x\n", (int)addr);
return 0;
}
}
static const MemoryRegionOps pci_vpb_reg_ops = {
.read = pci_vpb_reg_read,
.write = pci_vpb_reg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static int pci_vpb_broken_irq(int slot, int irq)
{
/* Determine whether this IRQ value for this slot represents a
* known broken Linux kernel behaviour for this slot.
* Return one of the PCI_VPB_IRQMAP_ constants:
* BROKEN : if this definitely looks like a broken kernel
* FORCE_OK : if this definitely looks good
* ASSUME_OK : if we can't tell
*/
slot %= PCI_NUM_PINS;
if (irq == 27) {
if (slot == 2) {
/* Might be a Phase I kernel, or might be a fixed kernel,
* since slot 2 is where we expect this IRQ.
*/
return PCI_VPB_IRQMAP_ASSUME_OK;
}
/* Phase I kernel */
return PCI_VPB_IRQMAP_BROKEN;
}
if (irq == slot + 27) {
/* Phase II kernel */
return PCI_VPB_IRQMAP_BROKEN;
}
if (irq == slot + 27 + 64) {
/* Phase III kernel */
return PCI_VPB_IRQMAP_BROKEN;
}
/* Anything else must be a fixed kernel, possibly using an
* arbitrary irq map.
*/
return PCI_VPB_IRQMAP_FORCE_OK;
}
static void pci_vpb_config_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PCIVPBState *s = opaque;
if (!s->realview && (addr & 0xff) == PCI_INTERRUPT_LINE
&& s->irq_mapping == PCI_VPB_IRQMAP_ASSUME_OK) {
uint8_t devfn = addr >> 8;
s->irq_mapping = pci_vpb_broken_irq(PCI_SLOT(devfn), val);
}
pci_data_write(&s->pci_bus, addr, val, size);
}
static uint64_t pci_vpb_config_read(void *opaque, hwaddr addr,
unsigned size)
{
PCIVPBState *s = opaque;
uint32_t val;
val = pci_data_read(&s->pci_bus, addr, size);
return val;
}
static const MemoryRegionOps pci_vpb_config_ops = {
.read = pci_vpb_config_read,
.write = pci_vpb_config_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int pci_vpb_map_irq(PCIDevice *d, int irq_num)
{
PCIVPBState *s = container_of(d->bus, PCIVPBState, pci_bus);
if (s->irq_mapping == PCI_VPB_IRQMAP_BROKEN) {
/* Legacy broken IRQ mapping for compatibility with old and
* buggy Linux guests
*/
return irq_num;
}
/* Slot to IRQ mapping for RealView Platform Baseboard 926 backplane
* name slot IntA IntB IntC IntD
* A 31 IRQ28 IRQ29 IRQ30 IRQ27
* B 30 IRQ27 IRQ28 IRQ29 IRQ30
* C 29 IRQ30 IRQ27 IRQ28 IRQ29
* Slot C is for the host bridge; A and B the peripherals.
* Our output irqs 0..3 correspond to the baseboard's 27..30.
*
* This mapping function takes account of an oddity in the PB926
* board wiring, where the FPGA's P_nINTA input is connected to
* the INTB connection on the board PCI edge connector, P_nINTB
* is connected to INTC, and so on, so everything is one number
* further round from where you might expect.
*/
return pci_swizzle_map_irq_fn(d, irq_num + 2);
}
static int pci_vpb_rv_map_irq(PCIDevice *d, int irq_num)
{
/* Slot to IRQ mapping for RealView EB and PB1176 backplane
* name slot IntA IntB IntC IntD
* A 31 IRQ50 IRQ51 IRQ48 IRQ49
* B 30 IRQ49 IRQ50 IRQ51 IRQ48
* C 29 IRQ48 IRQ49 IRQ50 IRQ51
* Slot C is for the host bridge; A and B the peripherals.
* Our output irqs 0..3 correspond to the baseboard's 48..51.
*
* The PB1176 and EB boards don't have the PB926 wiring oddity
* described above; P_nINTA connects to INTA, P_nINTB to INTB
* and so on, which is why this mapping function is different.
*/
return pci_swizzle_map_irq_fn(d, irq_num + 3);
}
static void pci_vpb_set_irq(void *opaque, int irq_num, int level)
{
qemu_irq *pic = opaque;
qemu_set_irq(pic[irq_num], level);
}
static void pci_vpb_reset(DeviceState *d)
{
PCIVPBState *s = PCI_VPB(d);
s->imap[0] = 0;
s->imap[1] = 0;
s->imap[2] = 0;
s->smap[0] = 0;
s->smap[1] = 0;
s->smap[2] = 0;
s->selfid = 0;
s->flags = 0;
s->irq_mapping = s->irq_mapping_prop;
pci_vpb_update_all_windows(s);
}
static void pci_vpb_init(Object *obj)
{
PCIHostState *h = PCI_HOST_BRIDGE(obj);
PCIVPBState *s = PCI_VPB(obj);
memory_region_init(&s->pci_io_space, OBJECT(s), "pci_io", 1ULL << 32);
memory_region_init(&s->pci_mem_space, OBJECT(s), "pci_mem", 1ULL << 32);
pci_bus_new_inplace(&s->pci_bus, sizeof(s->pci_bus), DEVICE(obj), "pci",
&s->pci_mem_space, &s->pci_io_space,
PCI_DEVFN(11, 0), TYPE_PCI_BUS);
h->bus = &s->pci_bus;
object_initialize(&s->pci_dev, TYPE_VERSATILE_PCI_HOST);
qdev_set_parent_bus(DEVICE(&s->pci_dev), BUS(&s->pci_bus));
/* Window sizes for VersatilePB; realview_pci's init will override */
s->mem_win_size[0] = 0x0c000000;
s->mem_win_size[1] = 0x10000000;
s->mem_win_size[2] = 0x10000000;
}
static void pci_vpb_realize(DeviceState *dev, Error **errp)
{
PCIVPBState *s = PCI_VPB(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
pci_map_irq_fn mapfn;
int i;
for (i = 0; i < 4; i++) {
sysbus_init_irq(sbd, &s->irq[i]);
}
if (s->realview) {
mapfn = pci_vpb_rv_map_irq;
} else {
mapfn = pci_vpb_map_irq;
}
pci_bus_irqs(&s->pci_bus, pci_vpb_set_irq, mapfn, s->irq, 4);
/* Our memory regions are:
* 0 : our control registers
* 1 : PCI self config window
* 2 : PCI config window
* 3 : PCI IO window
* 4..6 : PCI memory windows
*/
memory_region_init_io(&s->controlregs, OBJECT(s), &pci_vpb_reg_ops, s,
"pci-vpb-regs", 0x1000);
sysbus_init_mmio(sbd, &s->controlregs);
memory_region_init_io(&s->mem_config, OBJECT(s), &pci_vpb_config_ops, s,
"pci-vpb-selfconfig", 0x1000000);
sysbus_init_mmio(sbd, &s->mem_config);
memory_region_init_io(&s->mem_config2, OBJECT(s), &pci_vpb_config_ops, s,
"pci-vpb-config", 0x1000000);
sysbus_init_mmio(sbd, &s->mem_config2);
/* The window into I/O space is always into a fixed base address;
* its size is the same for both realview and versatile.
*/
memory_region_init_alias(&s->pci_io_window, OBJECT(s), "pci-vbp-io-window",
&s->pci_io_space, 0, 0x100000);
sysbus_init_mmio(sbd, &s->pci_io_space);
/* Create the alias regions corresponding to our three windows onto
* PCI memory space. The sizes vary from board to board; the base
* offsets are guest controllable via the IMAP registers.
*/
for (i = 0; i < 3; i++) {
memory_region_init_alias(&s->pci_mem_window[i], OBJECT(s), "pci-vbp-window",
&s->pci_mem_space, 0, s->mem_win_size[i]);
sysbus_init_mmio(sbd, &s->pci_mem_window[i]);
}
/* TODO Remove once realize propagates to child devices. */
object_property_set_bool(OBJECT(&s->pci_dev), true, "realized", errp);
}
static int versatile_pci_host_init(PCIDevice *d)
{
pci_set_word(d->config + PCI_STATUS,
PCI_STATUS_66MHZ | PCI_STATUS_DEVSEL_MEDIUM);
pci_set_byte(d->config + PCI_LATENCY_TIMER, 0x10);
return 0;
}
static void versatile_pci_host_class_init(ObjectClass *klass, void *data)
{
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = versatile_pci_host_init;
k->vendor_id = PCI_VENDOR_ID_XILINX;
k->device_id = PCI_DEVICE_ID_XILINX_XC2VP30;
k->class_id = PCI_CLASS_PROCESSOR_CO;
}
static const TypeInfo versatile_pci_host_info = {
.name = TYPE_VERSATILE_PCI_HOST,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(PCIDevice),
.class_init = versatile_pci_host_class_init,
};
static Property pci_vpb_properties[] = {
DEFINE_PROP_UINT8("broken-irq-mapping", PCIVPBState, irq_mapping_prop,
PCI_VPB_IRQMAP_ASSUME_OK),
DEFINE_PROP_END_OF_LIST()
};
static void pci_vpb_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pci_vpb_realize;
dc->reset = pci_vpb_reset;
dc->vmsd = &pci_vpb_vmstate;
dc->props = pci_vpb_properties;
}
static const TypeInfo pci_vpb_info = {
.name = TYPE_VERSATILE_PCI,
.parent = TYPE_PCI_HOST_BRIDGE,
.instance_size = sizeof(PCIVPBState),
.instance_init = pci_vpb_init,
.class_init = pci_vpb_class_init,
};
static void pci_realview_init(Object *obj)
{
PCIVPBState *s = PCI_VPB(obj);
s->realview = 1;
/* The PCI window sizes are different on Realview boards */
s->mem_win_size[0] = 0x01000000;
s->mem_win_size[1] = 0x04000000;
s->mem_win_size[2] = 0x08000000;
}
static const TypeInfo pci_realview_info = {
.name = "realview_pci",
.parent = TYPE_VERSATILE_PCI,
.instance_init = pci_realview_init,
};
static void versatile_pci_register_types(void)
{
type_register_static(&pci_vpb_info);
type_register_static(&pci_realview_info);
type_register_static(&versatile_pci_host_info);
}
type_init(versatile_pci_register_types)
|