aboutsummaryrefslogtreecommitdiff
path: root/hw/nvme/ns.c
blob: cfac960dcf39c4982810a6eb0a36d28913e88360 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
/*
 * QEMU NVM Express Virtual Namespace
 *
 * Copyright (c) 2019 CNEX Labs
 * Copyright (c) 2020 Samsung Electronics
 *
 * Authors:
 *  Klaus Jensen      <k.jensen@samsung.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2. See the
 * COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qemu/bitops.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"

#include "nvme.h"
#include "trace.h"

#define MIN_DISCARD_GRANULARITY (4 * KiB)
#define NVME_DEFAULT_ZONE_SIZE   (128 * MiB)

void nvme_ns_init_format(NvmeNamespace *ns)
{
    NvmeIdNs *id_ns = &ns->id_ns;
    BlockDriverInfo bdi;
    int npdg, ret;
    int64_t nlbas;

    ns->lbaf = id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(id_ns->flbas)];
    ns->lbasz = 1 << ns->lbaf.ds;

    nlbas = ns->size / (ns->lbasz + ns->lbaf.ms);

    id_ns->nsze = cpu_to_le64(nlbas);

    /* no thin provisioning */
    id_ns->ncap = id_ns->nsze;
    id_ns->nuse = id_ns->ncap;

    ns->moff = nlbas << ns->lbaf.ds;

    npdg = ns->blkconf.discard_granularity / ns->lbasz;

    ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi);
    if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) {
        npdg = bdi.cluster_size / ns->lbasz;
    }

    id_ns->npda = id_ns->npdg = npdg - 1;
}

static int nvme_ns_init(NvmeNamespace *ns, Error **errp)
{
    static uint64_t ns_count;
    NvmeIdNs *id_ns = &ns->id_ns;
    NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm;
    uint8_t ds;
    uint16_t ms;
    int i;

    ns->csi = NVME_CSI_NVM;
    ns->status = 0x0;

    ns->id_ns.dlfeat = 0x1;

    /* support DULBE and I/O optimization fields */
    id_ns->nsfeat |= (0x4 | 0x10);

    if (ns->params.shared) {
        id_ns->nmic |= NVME_NMIC_NS_SHARED;
    }

    /* Substitute a missing EUI-64 by an autogenerated one */
    ++ns_count;
    if (!ns->params.eui64 && ns->params.eui64_default) {
        ns->params.eui64 = ns_count + NVME_EUI64_DEFAULT;
    }

    /* simple copy */
    id_ns->mssrl = cpu_to_le16(ns->params.mssrl);
    id_ns->mcl = cpu_to_le32(ns->params.mcl);
    id_ns->msrc = ns->params.msrc;
    id_ns->eui64 = cpu_to_be64(ns->params.eui64);

    ds = 31 - clz32(ns->blkconf.logical_block_size);
    ms = ns->params.ms;

    id_ns->mc = NVME_ID_NS_MC_EXTENDED | NVME_ID_NS_MC_SEPARATE;

    if (ms && ns->params.mset) {
        id_ns->flbas |= NVME_ID_NS_FLBAS_EXTENDED;
    }

    id_ns->dpc = 0x1f;
    id_ns->dps = ns->params.pi;
    if (ns->params.pi && ns->params.pil) {
        id_ns->dps |= NVME_ID_NS_DPS_FIRST_EIGHT;
    }

    ns->pif = ns->params.pif;

    static const NvmeLBAF lbaf[16] = {
        [0] = { .ds =  9           },
        [1] = { .ds =  9, .ms =  8 },
        [2] = { .ds =  9, .ms = 16 },
        [3] = { .ds =  9, .ms = 64 },
        [4] = { .ds = 12           },
        [5] = { .ds = 12, .ms =  8 },
        [6] = { .ds = 12, .ms = 16 },
        [7] = { .ds = 12, .ms = 64 },
    };

    ns->nlbaf = 8;

    memcpy(&id_ns->lbaf, &lbaf, sizeof(lbaf));

    for (i = 0; i < ns->nlbaf; i++) {
        NvmeLBAF *lbaf = &id_ns->lbaf[i];
        if (lbaf->ds == ds) {
            if (lbaf->ms == ms) {
                id_ns->flbas |= i;
                goto lbaf_found;
            }
        }
    }

    /* add non-standard lba format */
    id_ns->lbaf[ns->nlbaf].ds = ds;
    id_ns->lbaf[ns->nlbaf].ms = ms;
    ns->nlbaf++;

    id_ns->flbas |= i;


lbaf_found:
    id_ns_nvm->elbaf[i] = (ns->pif & 0x3) << 7;
    id_ns->nlbaf = ns->nlbaf - 1;
    nvme_ns_init_format(ns);

    return 0;
}

static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp)
{
    bool read_only;

    if (!blkconf_blocksizes(&ns->blkconf, errp)) {
        return -1;
    }

    read_only = !blk_supports_write_perm(ns->blkconf.blk);
    if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) {
        return -1;
    }

    if (ns->blkconf.discard_granularity == -1) {
        ns->blkconf.discard_granularity =
            MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY);
    }

    ns->size = blk_getlength(ns->blkconf.blk);
    if (ns->size < 0) {
        error_setg_errno(errp, -ns->size, "could not get blockdev size");
        return -1;
    }

    return 0;
}

static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp)
{
    uint64_t zone_size, zone_cap;

    /* Make sure that the values of ZNS properties are sane */
    if (ns->params.zone_size_bs) {
        zone_size = ns->params.zone_size_bs;
    } else {
        zone_size = NVME_DEFAULT_ZONE_SIZE;
    }
    if (ns->params.zone_cap_bs) {
        zone_cap = ns->params.zone_cap_bs;
    } else {
        zone_cap = zone_size;
    }
    if (zone_cap > zone_size) {
        error_setg(errp, "zone capacity %"PRIu64"B exceeds "
                   "zone size %"PRIu64"B", zone_cap, zone_size);
        return -1;
    }
    if (zone_size < ns->lbasz) {
        error_setg(errp, "zone size %"PRIu64"B too small, "
                   "must be at least %zuB", zone_size, ns->lbasz);
        return -1;
    }
    if (zone_cap < ns->lbasz) {
        error_setg(errp, "zone capacity %"PRIu64"B too small, "
                   "must be at least %zuB", zone_cap, ns->lbasz);
        return -1;
    }

    /*
     * Save the main zone geometry values to avoid
     * calculating them later again.
     */
    ns->zone_size = zone_size / ns->lbasz;
    ns->zone_capacity = zone_cap / ns->lbasz;
    ns->num_zones = le64_to_cpu(ns->id_ns.nsze) / ns->zone_size;

    /* Do a few more sanity checks of ZNS properties */
    if (!ns->num_zones) {
        error_setg(errp,
                   "insufficient drive capacity, must be at least the size "
                   "of one zone (%"PRIu64"B)", zone_size);
        return -1;
    }

    return 0;
}

static void nvme_ns_zoned_init_state(NvmeNamespace *ns)
{
    uint64_t start = 0, zone_size = ns->zone_size;
    uint64_t capacity = ns->num_zones * zone_size;
    NvmeZone *zone;
    int i;

    ns->zone_array = g_new0(NvmeZone, ns->num_zones);
    if (ns->params.zd_extension_size) {
        ns->zd_extensions = g_malloc0(ns->params.zd_extension_size *
                                      ns->num_zones);
    }

    QTAILQ_INIT(&ns->exp_open_zones);
    QTAILQ_INIT(&ns->imp_open_zones);
    QTAILQ_INIT(&ns->closed_zones);
    QTAILQ_INIT(&ns->full_zones);

    zone = ns->zone_array;
    for (i = 0; i < ns->num_zones; i++, zone++) {
        if (start + zone_size > capacity) {
            zone_size = capacity - start;
        }
        zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE;
        nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
        zone->d.za = 0;
        zone->d.zcap = ns->zone_capacity;
        zone->d.zslba = start;
        zone->d.wp = start;
        zone->w_ptr = start;
        start += zone_size;
    }

    ns->zone_size_log2 = 0;
    if (is_power_of_2(ns->zone_size)) {
        ns->zone_size_log2 = 63 - clz64(ns->zone_size);
    }
}

static void nvme_ns_init_zoned(NvmeNamespace *ns)
{
    NvmeIdNsZoned *id_ns_z;
    int i;

    nvme_ns_zoned_init_state(ns);

    id_ns_z = g_new0(NvmeIdNsZoned, 1);

    /* MAR/MOR are zeroes-based, FFFFFFFFFh means no limit */
    id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1);
    id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1);
    id_ns_z->zoc = 0;
    id_ns_z->ozcs = ns->params.cross_zone_read ?
        NVME_ID_NS_ZONED_OZCS_RAZB : 0x00;

    for (i = 0; i <= ns->id_ns.nlbaf; i++) {
        id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size);
        id_ns_z->lbafe[i].zdes =
            ns->params.zd_extension_size >> 6; /* Units of 64B */
    }

    if (ns->params.zrwas) {
        ns->zns.numzrwa = ns->params.numzrwa ?
            ns->params.numzrwa : ns->num_zones;

        ns->zns.zrwas = ns->params.zrwas >> ns->lbaf.ds;
        ns->zns.zrwafg = ns->params.zrwafg >> ns->lbaf.ds;

        id_ns_z->ozcs |= NVME_ID_NS_ZONED_OZCS_ZRWASUP;
        id_ns_z->zrwacap = NVME_ID_NS_ZONED_ZRWACAP_EXPFLUSHSUP;

        id_ns_z->numzrwa = cpu_to_le32(ns->params.numzrwa);
        id_ns_z->zrwas = cpu_to_le16(ns->zns.zrwas);
        id_ns_z->zrwafg = cpu_to_le16(ns->zns.zrwafg);
    }

    id_ns_z->ozcs = cpu_to_le16(id_ns_z->ozcs);

    ns->csi = NVME_CSI_ZONED;
    ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size);
    ns->id_ns.ncap = ns->id_ns.nsze;
    ns->id_ns.nuse = ns->id_ns.ncap;

    /*
     * The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated"
     * status of logical blocks. Since the spec defines that logical blocks
     * SHALL be deallocated when then zone is in the Empty or Offline states,
     * we can only support DULBE if the zone size is a multiple of the
     * calculated NPDG.
     */
    if (ns->zone_size % (ns->id_ns.npdg + 1)) {
        warn_report("the zone size (%"PRIu64" blocks) is not a multiple of "
                    "the calculated deallocation granularity (%d blocks); "
                    "DULBE support disabled",
                    ns->zone_size, ns->id_ns.npdg + 1);

        ns->id_ns.nsfeat &= ~0x4;
    }

    ns->id_ns_zoned = id_ns_z;
}

static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone)
{
    uint8_t state;

    zone->w_ptr = zone->d.wp;
    state = nvme_get_zone_state(zone);
    if (zone->d.wp != zone->d.zslba ||
        (zone->d.za & NVME_ZA_ZD_EXT_VALID)) {
        if (state != NVME_ZONE_STATE_CLOSED) {
            trace_pci_nvme_clear_ns_close(state, zone->d.zslba);
            nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED);
        }
        nvme_aor_inc_active(ns);
        QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry);
    } else {
        trace_pci_nvme_clear_ns_reset(state, zone->d.zslba);
        if (zone->d.za & NVME_ZA_ZRWA_VALID) {
            zone->d.za &= ~NVME_ZA_ZRWA_VALID;
            ns->zns.numzrwa++;
        }
        nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
    }
}

/*
 * Close all the zones that are currently open.
 */
static void nvme_zoned_ns_shutdown(NvmeNamespace *ns)
{
    NvmeZone *zone, *next;

    QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
        QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
        nvme_aor_dec_active(ns);
        nvme_clear_zone(ns, zone);
    }
    QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
        QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
        nvme_aor_dec_open(ns);
        nvme_aor_dec_active(ns);
        nvme_clear_zone(ns, zone);
    }
    QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
        QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
        nvme_aor_dec_open(ns);
        nvme_aor_dec_active(ns);
        nvme_clear_zone(ns, zone);
    }

    assert(ns->nr_open_zones == 0);
}

static NvmeRuHandle *nvme_find_ruh_by_attr(NvmeEnduranceGroup *endgrp,
                                           uint8_t ruha, uint16_t *ruhid)
{
    for (uint16_t i = 0; i < endgrp->fdp.nruh; i++) {
        NvmeRuHandle *ruh = &endgrp->fdp.ruhs[i];

        if (ruh->ruha == ruha) {
            *ruhid = i;
            return ruh;
        }
    }

    return NULL;
}

static bool nvme_ns_init_fdp(NvmeNamespace *ns, Error **errp)
{
    NvmeEnduranceGroup *endgrp = ns->endgrp;
    NvmeRuHandle *ruh;
    uint8_t lbafi = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
    unsigned int *ruhid, *ruhids;
    char *r, *p, *token;
    uint16_t *ph;

    if (!ns->params.fdp.ruhs) {
        ns->fdp.nphs = 1;
        ph = ns->fdp.phs = g_new(uint16_t, 1);

        ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_CTRL, ph);
        if (!ruh) {
            ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_UNUSED, ph);
            if (!ruh) {
                error_setg(errp, "no unused reclaim unit handles left");
                return false;
            }

            ruh->ruha = NVME_RUHA_CTRL;
            ruh->lbafi = lbafi;
            ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds;

            for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) {
                ruh->rus[rg].ruamw = ruh->ruamw;
            }
        } else if (ruh->lbafi != lbafi) {
            error_setg(errp, "lba format index of controller assigned "
                       "reclaim unit handle does not match namespace lba "
                       "format index");
            return false;
        }

        return true;
    }

    ruhid = ruhids = g_new0(unsigned int, endgrp->fdp.nruh);
    r = p = strdup(ns->params.fdp.ruhs);

    /* parse the placement handle identifiers */
    while ((token = qemu_strsep(&p, ";")) != NULL) {
        ns->fdp.nphs += 1;
        if (ns->fdp.nphs > NVME_FDP_MAXPIDS ||
            ns->fdp.nphs == endgrp->fdp.nruh) {
            error_setg(errp, "too many placement handles");
            free(r);
            return false;
        }

        if (qemu_strtoui(token, NULL, 0, ruhid++) < 0) {
            error_setg(errp, "cannot parse reclaim unit handle identifier");
            free(r);
            return false;
        }
    }

    free(r);

    ph = ns->fdp.phs = g_new(uint16_t, ns->fdp.nphs);

    ruhid = ruhids;

    /* verify the identifiers */
    for (unsigned int i = 0; i < ns->fdp.nphs; i++, ruhid++, ph++) {
        if (*ruhid >= endgrp->fdp.nruh) {
            error_setg(errp, "invalid reclaim unit handle identifier");
            return false;
        }

        ruh = &endgrp->fdp.ruhs[*ruhid];

        switch (ruh->ruha) {
        case NVME_RUHA_UNUSED:
            ruh->ruha = NVME_RUHA_HOST;
            ruh->lbafi = lbafi;
            ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds;

            for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) {
                ruh->rus[rg].ruamw = ruh->ruamw;
            }

            break;

        case NVME_RUHA_HOST:
            if (ruh->lbafi != lbafi) {
                error_setg(errp, "lba format index of host assigned"
                           "reclaim unit handle does not match namespace "
                           "lba format index");
                return false;
            }

            break;

        case NVME_RUHA_CTRL:
            error_setg(errp, "reclaim unit handle is controller assigned");
            return false;

        default:
            abort();
        }

        *ph = *ruhid;
    }

    return true;
}

static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp)
{
    unsigned int pi_size;

    if (!ns->blkconf.blk) {
        error_setg(errp, "block backend not configured");
        return -1;
    }

    if (ns->params.pi) {
        if (ns->params.pi > NVME_ID_NS_DPS_TYPE_3) {
            error_setg(errp, "invalid 'pi' value");
            return -1;
        }

        switch (ns->params.pif) {
        case NVME_PI_GUARD_16:
            pi_size = 8;
            break;
        case NVME_PI_GUARD_64:
            pi_size = 16;
            break;
        default:
            error_setg(errp, "invalid 'pif'");
            return -1;
        }

        if (ns->params.ms < pi_size) {
            error_setg(errp, "at least %u bytes of metadata required to "
                       "enable protection information", pi_size);
            return -1;
        }
    }

    if (ns->params.nsid > NVME_MAX_NAMESPACES) {
        error_setg(errp, "invalid namespace id (must be between 0 and %d)",
                   NVME_MAX_NAMESPACES);
        return -1;
    }

    if (ns->params.zoned && ns->endgrp && ns->endgrp->fdp.enabled) {
        error_setg(errp, "cannot be a zoned- in an FDP configuration");
        return -1;
    }

    if (ns->params.zoned) {
        if (ns->params.max_active_zones) {
            if (ns->params.max_open_zones > ns->params.max_active_zones) {
                error_setg(errp, "max_open_zones (%u) exceeds "
                           "max_active_zones (%u)", ns->params.max_open_zones,
                           ns->params.max_active_zones);
                return -1;
            }

            if (!ns->params.max_open_zones) {
                ns->params.max_open_zones = ns->params.max_active_zones;
            }
        }

        if (ns->params.zd_extension_size) {
            if (ns->params.zd_extension_size & 0x3f) {
                error_setg(errp, "zone descriptor extension size must be a "
                           "multiple of 64B");
                return -1;
            }
            if ((ns->params.zd_extension_size >> 6) > 0xff) {
                error_setg(errp,
                           "zone descriptor extension size is too large");
                return -1;
            }
        }

        if (ns->params.zrwas) {
            if (ns->params.zrwas % ns->blkconf.logical_block_size) {
                error_setg(errp, "zone random write area size (zoned.zrwas "
                           "%"PRIu64") must be a multiple of the logical "
                           "block size (logical_block_size %"PRIu32")",
                           ns->params.zrwas, ns->blkconf.logical_block_size);
                return -1;
            }

            if (ns->params.zrwafg == -1) {
                ns->params.zrwafg = ns->blkconf.logical_block_size;
            }

            if (ns->params.zrwas % ns->params.zrwafg) {
                error_setg(errp, "zone random write area size (zoned.zrwas "
                           "%"PRIu64") must be a multiple of the zone random "
                           "write area flush granularity (zoned.zrwafg, "
                           "%"PRIu64")", ns->params.zrwas, ns->params.zrwafg);
                return -1;
            }

            if (ns->params.max_active_zones) {
                if (ns->params.numzrwa > ns->params.max_active_zones) {
                    error_setg(errp, "number of zone random write area "
                               "resources (zoned.numzrwa, %d) must be less "
                               "than or equal to maximum active resources "
                               "(zoned.max_active_zones, %d)",
                               ns->params.numzrwa,
                               ns->params.max_active_zones);
                    return -1;
                }
            }
        }
    }

    return 0;
}

int nvme_ns_setup(NvmeNamespace *ns, Error **errp)
{
    if (nvme_ns_check_constraints(ns, errp)) {
        return -1;
    }

    if (nvme_ns_init_blk(ns, errp)) {
        return -1;
    }

    if (nvme_ns_init(ns, errp)) {
        return -1;
    }
    if (ns->params.zoned) {
        if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) {
            return -1;
        }
        nvme_ns_init_zoned(ns);
    }

    if (ns->endgrp && ns->endgrp->fdp.enabled) {
        if (!nvme_ns_init_fdp(ns, errp)) {
            return -1;
        }
    }

    return 0;
}

void nvme_ns_drain(NvmeNamespace *ns)
{
    blk_drain(ns->blkconf.blk);
}

void nvme_ns_shutdown(NvmeNamespace *ns)
{
    blk_flush(ns->blkconf.blk);
    if (ns->params.zoned) {
        nvme_zoned_ns_shutdown(ns);
    }
}

void nvme_ns_cleanup(NvmeNamespace *ns)
{
    if (ns->params.zoned) {
        g_free(ns->id_ns_zoned);
        g_free(ns->zone_array);
        g_free(ns->zd_extensions);
    }

    if (ns->endgrp && ns->endgrp->fdp.enabled) {
        g_free(ns->fdp.phs);
    }
}

static void nvme_ns_unrealize(DeviceState *dev)
{
    NvmeNamespace *ns = NVME_NS(dev);

    nvme_ns_drain(ns);
    nvme_ns_shutdown(ns);
    nvme_ns_cleanup(ns);
}

static void nvme_ns_realize(DeviceState *dev, Error **errp)
{
    NvmeNamespace *ns = NVME_NS(dev);
    BusState *s = qdev_get_parent_bus(dev);
    NvmeCtrl *n = NVME(s->parent);
    NvmeSubsystem *subsys = n->subsys;
    uint32_t nsid = ns->params.nsid;
    int i;

    if (!n->subsys) {
        /* If no subsys, the ns cannot be attached to more than one ctrl. */
        ns->params.shared = false;
        if (ns->params.detached) {
            error_setg(errp, "detached requires that the nvme device is "
                       "linked to an nvme-subsys device");
            return;
        }
    } else {
        /*
         * If this namespace belongs to a subsystem (through a link on the
         * controller device), reparent the device.
         */
        if (!qdev_set_parent_bus(dev, &subsys->bus.parent_bus, errp)) {
            return;
        }
        ns->subsys = subsys;
        ns->endgrp = &subsys->endgrp;
    }

    if (nvme_ns_setup(ns, errp)) {
        return;
    }

    if (!nsid) {
        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
            if (nvme_ns(n, i) || nvme_subsys_ns(subsys, i)) {
                continue;
            }

            nsid = ns->params.nsid = i;
            break;
        }

        if (!nsid) {
            error_setg(errp, "no free namespace id");
            return;
        }
    } else {
        if (nvme_ns(n, nsid) || nvme_subsys_ns(subsys, nsid)) {
            error_setg(errp, "namespace id '%d' already allocated", nsid);
            return;
        }
    }

    if (subsys) {
        subsys->namespaces[nsid] = ns;

        ns->id_ns.endgid = cpu_to_le16(0x1);

        if (ns->params.detached) {
            return;
        }

        if (ns->params.shared) {
            for (i = 0; i < ARRAY_SIZE(subsys->ctrls); i++) {
                NvmeCtrl *ctrl = subsys->ctrls[i];

                if (ctrl && ctrl != SUBSYS_SLOT_RSVD) {
                    nvme_attach_ns(ctrl, ns);
                }
            }

            return;
        }

    }

    nvme_attach_ns(n, ns);
}

static Property nvme_ns_props[] = {
    DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf),
    DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false),
    DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, true),
    DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0),
    DEFINE_PROP_UUID_NODEFAULT("uuid", NvmeNamespace, params.uuid),
    DEFINE_PROP_UINT64("eui64", NvmeNamespace, params.eui64, 0),
    DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0),
    DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0),
    DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0),
    DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0),
    DEFINE_PROP_UINT8("pif", NvmeNamespace, params.pif, 0),
    DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128),
    DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128),
    DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127),
    DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false),
    DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs,
                     NVME_DEFAULT_ZONE_SIZE),
    DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs,
                     0),
    DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace,
                     params.cross_zone_read, false),
    DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace,
                       params.max_active_zones, 0),
    DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace,
                       params.max_open_zones, 0),
    DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace,
                       params.zd_extension_size, 0),
    DEFINE_PROP_UINT32("zoned.numzrwa", NvmeNamespace, params.numzrwa, 0),
    DEFINE_PROP_SIZE("zoned.zrwas", NvmeNamespace, params.zrwas, 0),
    DEFINE_PROP_SIZE("zoned.zrwafg", NvmeNamespace, params.zrwafg, -1),
    DEFINE_PROP_BOOL("eui64-default", NvmeNamespace, params.eui64_default,
                     false),
    DEFINE_PROP_STRING("fdp.ruhs", NvmeNamespace, params.fdp.ruhs),
    DEFINE_PROP_END_OF_LIST(),
};

static void nvme_ns_class_init(ObjectClass *oc, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(oc);

    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);

    dc->bus_type = TYPE_NVME_BUS;
    dc->realize = nvme_ns_realize;
    dc->unrealize = nvme_ns_unrealize;
    device_class_set_props(dc, nvme_ns_props);
    dc->desc = "Virtual NVMe namespace";
}

static void nvme_ns_instance_init(Object *obj)
{
    NvmeNamespace *ns = NVME_NS(obj);
    char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid);

    device_add_bootindex_property(obj, &ns->bootindex, "bootindex",
                                  bootindex, DEVICE(obj));

    g_free(bootindex);
}

static const TypeInfo nvme_ns_info = {
    .name = TYPE_NVME_NS,
    .parent = TYPE_DEVICE,
    .class_init = nvme_ns_class_init,
    .instance_size = sizeof(NvmeNamespace),
    .instance_init = nvme_ns_instance_init,
};

static void nvme_ns_register_types(void)
{
    type_register_static(&nvme_ns_info);
}

type_init(nvme_ns_register_types)