aboutsummaryrefslogtreecommitdiff
path: root/hw/net/e1000.c
blob: e33a4da9fa2a6b708f10301f523b312710b11ee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
/*
 * QEMU e1000 emulation
 *
 * Software developer's manual:
 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
 *
 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
 * Copyright (c) 2008 Qumranet
 * Based on work done by:
 * Copyright (c) 2007 Dan Aloni
 * Copyright (c) 2004 Antony T Curtis
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */


#include "hw/hw.h"
#include "hw/pci/pci.h"
#include "net/net.h"
#include "net/checksum.h"
#include "hw/loader.h"
#include "sysemu/sysemu.h"
#include "sysemu/dma.h"
#include "qemu/iov.h"

#include "e1000_regs.h"

#define E1000_DEBUG

#ifdef E1000_DEBUG
enum {
    DEBUG_GENERAL,	DEBUG_IO,	DEBUG_MMIO,	DEBUG_INTERRUPT,
    DEBUG_RX,		DEBUG_TX,	DEBUG_MDIC,	DEBUG_EEPROM,
    DEBUG_UNKNOWN,	DEBUG_TXSUM,	DEBUG_TXERR,	DEBUG_RXERR,
    DEBUG_RXFILTER,     DEBUG_PHY,      DEBUG_NOTYET,
};
#define DBGBIT(x)	(1<<DEBUG_##x)
static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);

#define	DBGOUT(what, fmt, ...) do { \
    if (debugflags & DBGBIT(what)) \
        fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
    } while (0)
#else
#define	DBGOUT(what, fmt, ...) do {} while (0)
#endif

#define IOPORT_SIZE       0x40
#define PNPMMIO_SIZE      0x20000
#define MIN_BUF_SIZE      60 /* Min. octets in an ethernet frame sans FCS */

/* this is the size past which hardware will drop packets when setting LPE=0 */
#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
/* this is the size past which hardware will drop packets when setting LPE=1 */
#define MAXIMUM_ETHERNET_LPE_SIZE 16384

#define MAXIMUM_ETHERNET_HDR_LEN (14+4)

/*
 * HW models:
 *  E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
 *  E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
 *  E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
 *  Others never tested
 */

typedef struct E1000State_st {
    /*< private >*/
    PCIDevice parent_obj;
    /*< public >*/

    NICState *nic;
    NICConf conf;
    MemoryRegion mmio;
    MemoryRegion io;

    uint32_t mac_reg[0x8000];
    uint16_t phy_reg[0x20];
    uint16_t eeprom_data[64];

    uint32_t rxbuf_size;
    uint32_t rxbuf_min_shift;
    struct e1000_tx {
        unsigned char header[256];
        unsigned char vlan_header[4];
        /* Fields vlan and data must not be reordered or separated. */
        unsigned char vlan[4];
        unsigned char data[0x10000];
        uint16_t size;
        unsigned char sum_needed;
        unsigned char vlan_needed;
        uint8_t ipcss;
        uint8_t ipcso;
        uint16_t ipcse;
        uint8_t tucss;
        uint8_t tucso;
        uint16_t tucse;
        uint8_t hdr_len;
        uint16_t mss;
        uint32_t paylen;
        uint16_t tso_frames;
        char tse;
        int8_t ip;
        int8_t tcp;
        char cptse;     // current packet tse bit
    } tx;

    struct {
        uint32_t val_in;	// shifted in from guest driver
        uint16_t bitnum_in;
        uint16_t bitnum_out;
        uint16_t reading;
        uint32_t old_eecd;
    } eecd_state;

    QEMUTimer *autoneg_timer;

    QEMUTimer *mit_timer;      /* Mitigation timer. */
    bool mit_timer_on;         /* Mitigation timer is running. */
    bool mit_irq_level;        /* Tracks interrupt pin level. */
    uint32_t mit_ide;          /* Tracks E1000_TXD_CMD_IDE bit. */

/* Compatibility flags for migration to/from qemu 1.3.0 and older */
#define E1000_FLAG_AUTONEG_BIT 0
#define E1000_FLAG_MIT_BIT 1
#define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
#define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
    uint32_t compat_flags;
} E1000State;

typedef struct E1000BaseClass {
    PCIDeviceClass parent_class;
    uint16_t phy_id2;
} E1000BaseClass;

#define TYPE_E1000_BASE "e1000-base"

#define E1000(obj) \
    OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE)

#define E1000_DEVICE_CLASS(klass) \
     OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE)
#define E1000_DEVICE_GET_CLASS(obj) \
    OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE)

#define	defreg(x)	x = (E1000_##x>>2)
enum {
    defreg(CTRL),	defreg(EECD),	defreg(EERD),	defreg(GPRC),
    defreg(GPTC),	defreg(ICR),	defreg(ICS),	defreg(IMC),
    defreg(IMS),	defreg(LEDCTL),	defreg(MANC),	defreg(MDIC),
    defreg(MPC),	defreg(PBA),	defreg(RCTL),	defreg(RDBAH),
    defreg(RDBAL),	defreg(RDH),	defreg(RDLEN),	defreg(RDT),
    defreg(STATUS),	defreg(SWSM),	defreg(TCTL),	defreg(TDBAH),
    defreg(TDBAL),	defreg(TDH),	defreg(TDLEN),	defreg(TDT),
    defreg(TORH),	defreg(TORL),	defreg(TOTH),	defreg(TOTL),
    defreg(TPR),	defreg(TPT),	defreg(TXDCTL),	defreg(WUFC),
    defreg(RA),		defreg(MTA),	defreg(CRCERRS),defreg(VFTA),
    defreg(VET),        defreg(RDTR),   defreg(RADV),   defreg(TADV),
    defreg(ITR),
};

static void
e1000_link_down(E1000State *s)
{
    s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
    s->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS;
    s->phy_reg[PHY_STATUS] &= ~MII_SR_AUTONEG_COMPLETE;
    s->phy_reg[PHY_LP_ABILITY] &= ~MII_LPAR_LPACK;
}

static void
e1000_link_up(E1000State *s)
{
    s->mac_reg[STATUS] |= E1000_STATUS_LU;
    s->phy_reg[PHY_STATUS] |= MII_SR_LINK_STATUS;
}

static bool
have_autoneg(E1000State *s)
{
    return (s->compat_flags & E1000_FLAG_AUTONEG) &&
           (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN);
}

static void
set_phy_ctrl(E1000State *s, int index, uint16_t val)
{
    /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
    s->phy_reg[PHY_CTRL] = val & ~(0x3f |
                                   MII_CR_RESET |
                                   MII_CR_RESTART_AUTO_NEG);

    /*
     * QEMU 1.3 does not support link auto-negotiation emulation, so if we
     * migrate during auto negotiation, after migration the link will be
     * down.
     */
    if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
        e1000_link_down(s);
        DBGOUT(PHY, "Start link auto negotiation\n");
        timer_mod(s->autoneg_timer,
                  qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
    }
}

static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
    [PHY_CTRL] = set_phy_ctrl,
};

enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };

enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
static const char phy_regcap[0x20] = {
    [PHY_STATUS] = PHY_R,	[M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
    [PHY_ID1] = PHY_R,		[M88E1000_PHY_SPEC_CTRL] = PHY_RW,
    [PHY_CTRL] = PHY_RW,	[PHY_1000T_CTRL] = PHY_RW,
    [PHY_LP_ABILITY] = PHY_R,	[PHY_1000T_STATUS] = PHY_R,
    [PHY_AUTONEG_ADV] = PHY_RW,	[M88E1000_RX_ERR_CNTR] = PHY_R,
    [PHY_ID2] = PHY_R,		[M88E1000_PHY_SPEC_STATUS] = PHY_R,
    [PHY_AUTONEG_EXP] = PHY_R,
};

/* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
static const uint16_t phy_reg_init[] = {
    [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB |
                   MII_CR_FULL_DUPLEX |
                   MII_CR_AUTO_NEG_EN,

    [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
                   MII_SR_LINK_STATUS |   /* link initially up */
                   MII_SR_AUTONEG_CAPS |
                   /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */
                   MII_SR_PREAMBLE_SUPPRESS |
                   MII_SR_EXTENDED_STATUS |
                   MII_SR_10T_HD_CAPS |
                   MII_SR_10T_FD_CAPS |
                   MII_SR_100X_HD_CAPS |
                   MII_SR_100X_FD_CAPS,

    [PHY_ID1] = 0x141,
    /* [PHY_ID2] configured per DevId, from e1000_reset() */
    [PHY_AUTONEG_ADV] = 0xde1,
    [PHY_LP_ABILITY] = 0x1e0,
    [PHY_1000T_CTRL] = 0x0e00,
    [PHY_1000T_STATUS] = 0x3c00,
    [M88E1000_PHY_SPEC_CTRL] = 0x360,
    [M88E1000_PHY_SPEC_STATUS] = 0xac00,
    [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
};

static const uint32_t mac_reg_init[] = {
    [PBA] =     0x00100030,
    [LEDCTL] =  0x602,
    [CTRL] =    E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
                E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
    [STATUS] =  0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
                E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
                E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
                E1000_STATUS_LU,
    [MANC] =    E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
                E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
                E1000_MANC_RMCP_EN,
};

/* Helper function, *curr == 0 means the value is not set */
static inline void
mit_update_delay(uint32_t *curr, uint32_t value)
{
    if (value && (*curr == 0 || value < *curr)) {
        *curr = value;
    }
}

static void
set_interrupt_cause(E1000State *s, int index, uint32_t val)
{
    PCIDevice *d = PCI_DEVICE(s);
    uint32_t pending_ints;
    uint32_t mit_delay;

    s->mac_reg[ICR] = val;

    /*
     * Make sure ICR and ICS registers have the same value.
     * The spec says that the ICS register is write-only.  However in practice,
     * on real hardware ICS is readable, and for reads it has the same value as
     * ICR (except that ICS does not have the clear on read behaviour of ICR).
     *
     * The VxWorks PRO/1000 driver uses this behaviour.
     */
    s->mac_reg[ICS] = val;

    pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
    if (!s->mit_irq_level && pending_ints) {
        /*
         * Here we detect a potential raising edge. We postpone raising the
         * interrupt line if we are inside the mitigation delay window
         * (s->mit_timer_on == 1).
         * We provide a partial implementation of interrupt mitigation,
         * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
         * RADV and TADV, 256ns units for ITR). RDTR is only used to enable
         * RADV; relative timers based on TIDV and RDTR are not implemented.
         */
        if (s->mit_timer_on) {
            return;
        }
        if (s->compat_flags & E1000_FLAG_MIT) {
            /* Compute the next mitigation delay according to pending
             * interrupts and the current values of RADV (provided
             * RDTR!=0), TADV and ITR.
             * Then rearm the timer.
             */
            mit_delay = 0;
            if (s->mit_ide &&
                    (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
                mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
            }
            if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
                mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
            }
            mit_update_delay(&mit_delay, s->mac_reg[ITR]);

            if (mit_delay) {
                s->mit_timer_on = 1;
                timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                          mit_delay * 256);
            }
            s->mit_ide = 0;
        }
    }

    s->mit_irq_level = (pending_ints != 0);
    pci_set_irq(d, s->mit_irq_level);
}

static void
e1000_mit_timer(void *opaque)
{
    E1000State *s = opaque;

    s->mit_timer_on = 0;
    /* Call set_interrupt_cause to update the irq level (if necessary). */
    set_interrupt_cause(s, 0, s->mac_reg[ICR]);
}

static void
set_ics(E1000State *s, int index, uint32_t val)
{
    DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
        s->mac_reg[IMS]);
    set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
}

static void
e1000_autoneg_timer(void *opaque)
{
    E1000State *s = opaque;
    if (!qemu_get_queue(s->nic)->link_down) {
        e1000_link_up(s);
        s->phy_reg[PHY_LP_ABILITY] |= MII_LPAR_LPACK;
        s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
        DBGOUT(PHY, "Auto negotiation is completed\n");
        set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
    }
}

static int
rxbufsize(uint32_t v)
{
    v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
         E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
         E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
    switch (v) {
    case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
        return 16384;
    case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
        return 8192;
    case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
        return 4096;
    case E1000_RCTL_SZ_1024:
        return 1024;
    case E1000_RCTL_SZ_512:
        return 512;
    case E1000_RCTL_SZ_256:
        return 256;
    }
    return 2048;
}

static void e1000_reset(void *opaque)
{
    E1000State *d = opaque;
    E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d);
    uint8_t *macaddr = d->conf.macaddr.a;
    int i;

    timer_del(d->autoneg_timer);
    timer_del(d->mit_timer);
    d->mit_timer_on = 0;
    d->mit_irq_level = 0;
    d->mit_ide = 0;
    memset(d->phy_reg, 0, sizeof d->phy_reg);
    memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
    d->phy_reg[PHY_ID2] = edc->phy_id2;
    memset(d->mac_reg, 0, sizeof d->mac_reg);
    memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
    d->rxbuf_min_shift = 1;
    memset(&d->tx, 0, sizeof d->tx);

    if (qemu_get_queue(d->nic)->link_down) {
        e1000_link_down(d);
    }

    /* Some guests expect pre-initialized RAH/RAL (AddrValid flag + MACaddr) */
    d->mac_reg[RA] = 0;
    d->mac_reg[RA + 1] = E1000_RAH_AV;
    for (i = 0; i < 4; i++) {
        d->mac_reg[RA] |= macaddr[i] << (8 * i);
        d->mac_reg[RA + 1] |= (i < 2) ? macaddr[i + 4] << (8 * i) : 0;
    }
    qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
}

static void
set_ctrl(E1000State *s, int index, uint32_t val)
{
    /* RST is self clearing */
    s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
}

static void
set_rx_control(E1000State *s, int index, uint32_t val)
{
    s->mac_reg[RCTL] = val;
    s->rxbuf_size = rxbufsize(val);
    s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
    DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
           s->mac_reg[RCTL]);
    qemu_flush_queued_packets(qemu_get_queue(s->nic));
}

static void
set_mdic(E1000State *s, int index, uint32_t val)
{
    uint32_t data = val & E1000_MDIC_DATA_MASK;
    uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);

    if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
        val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
    else if (val & E1000_MDIC_OP_READ) {
        DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
        if (!(phy_regcap[addr] & PHY_R)) {
            DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
            val |= E1000_MDIC_ERROR;
        } else
            val = (val ^ data) | s->phy_reg[addr];
    } else if (val & E1000_MDIC_OP_WRITE) {
        DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
        if (!(phy_regcap[addr] & PHY_W)) {
            DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
            val |= E1000_MDIC_ERROR;
        } else {
            if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
                phyreg_writeops[addr](s, index, data);
            } else {
                s->phy_reg[addr] = data;
            }
        }
    }
    s->mac_reg[MDIC] = val | E1000_MDIC_READY;

    if (val & E1000_MDIC_INT_EN) {
        set_ics(s, 0, E1000_ICR_MDAC);
    }
}

static uint32_t
get_eecd(E1000State *s, int index)
{
    uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;

    DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
           s->eecd_state.bitnum_out, s->eecd_state.reading);
    if (!s->eecd_state.reading ||
        ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
          ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
        ret |= E1000_EECD_DO;
    return ret;
}

static void
set_eecd(E1000State *s, int index, uint32_t val)
{
    uint32_t oldval = s->eecd_state.old_eecd;

    s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
            E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
    if (!(E1000_EECD_CS & val))			// CS inactive; nothing to do
	return;
    if (E1000_EECD_CS & (val ^ oldval)) {	// CS rise edge; reset state
	s->eecd_state.val_in = 0;
	s->eecd_state.bitnum_in = 0;
	s->eecd_state.bitnum_out = 0;
	s->eecd_state.reading = 0;
    }
    if (!(E1000_EECD_SK & (val ^ oldval)))	// no clock edge
        return;
    if (!(E1000_EECD_SK & val)) {		// falling edge
        s->eecd_state.bitnum_out++;
        return;
    }
    s->eecd_state.val_in <<= 1;
    if (val & E1000_EECD_DI)
        s->eecd_state.val_in |= 1;
    if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
        s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
        s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
            EEPROM_READ_OPCODE_MICROWIRE);
    }
    DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
           s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
           s->eecd_state.reading);
}

static uint32_t
flash_eerd_read(E1000State *s, int x)
{
    unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;

    if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
        return (s->mac_reg[EERD]);

    if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
        return (E1000_EEPROM_RW_REG_DONE | r);

    return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
           E1000_EEPROM_RW_REG_DONE | r);
}

static void
putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
{
    uint32_t sum;

    if (cse && cse < n)
        n = cse + 1;
    if (sloc < n-1) {
        sum = net_checksum_add(n-css, data+css);
        stw_be_p(data + sloc, net_checksum_finish(sum));
    }
}

static inline int
vlan_enabled(E1000State *s)
{
    return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
}

static inline int
vlan_rx_filter_enabled(E1000State *s)
{
    return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
}

static inline int
is_vlan_packet(E1000State *s, const uint8_t *buf)
{
    return (be16_to_cpup((uint16_t *)(buf + 12)) ==
                le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
}

static inline int
is_vlan_txd(uint32_t txd_lower)
{
    return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
}

/* FCS aka Ethernet CRC-32. We don't get it from backends and can't
 * fill it in, just pad descriptor length by 4 bytes unless guest
 * told us to strip it off the packet. */
static inline int
fcs_len(E1000State *s)
{
    return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
}

static void
e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
{
    NetClientState *nc = qemu_get_queue(s->nic);
    if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) {
        nc->info->receive(nc, buf, size);
    } else {
        qemu_send_packet(nc, buf, size);
    }
}

static void
xmit_seg(E1000State *s)
{
    uint16_t len, *sp;
    unsigned int frames = s->tx.tso_frames, css, sofar, n;
    struct e1000_tx *tp = &s->tx;

    if (tp->tse && tp->cptse) {
        css = tp->ipcss;
        DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
               frames, tp->size, css);
        if (tp->ip) {		// IPv4
            stw_be_p(tp->data+css+2, tp->size - css);
            stw_be_p(tp->data+css+4,
                          be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
        } else			// IPv6
            stw_be_p(tp->data+css+4, tp->size - css);
        css = tp->tucss;
        len = tp->size - css;
        DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
        if (tp->tcp) {
            sofar = frames * tp->mss;
            stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
            if (tp->paylen - sofar > tp->mss)
                tp->data[css + 13] &= ~9;		// PSH, FIN
        } else	// UDP
            stw_be_p(tp->data+css+4, len);
        if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
            unsigned int phsum;
            // add pseudo-header length before checksum calculation
            sp = (uint16_t *)(tp->data + tp->tucso);
            phsum = be16_to_cpup(sp) + len;
            phsum = (phsum >> 16) + (phsum & 0xffff);
            stw_be_p(sp, phsum);
        }
        tp->tso_frames++;
    }

    if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
        putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
    if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
        putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
    if (tp->vlan_needed) {
        memmove(tp->vlan, tp->data, 4);
        memmove(tp->data, tp->data + 4, 8);
        memcpy(tp->data + 8, tp->vlan_header, 4);
        e1000_send_packet(s, tp->vlan, tp->size + 4);
    } else
        e1000_send_packet(s, tp->data, tp->size);
    s->mac_reg[TPT]++;
    s->mac_reg[GPTC]++;
    n = s->mac_reg[TOTL];
    if ((s->mac_reg[TOTL] += s->tx.size) < n)
        s->mac_reg[TOTH]++;
}

static void
process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
{
    PCIDevice *d = PCI_DEVICE(s);
    uint32_t txd_lower = le32_to_cpu(dp->lower.data);
    uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
    unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
    unsigned int msh = 0xfffff;
    uint64_t addr;
    struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
    struct e1000_tx *tp = &s->tx;

    s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
    if (dtype == E1000_TXD_CMD_DEXT) {	// context descriptor
        op = le32_to_cpu(xp->cmd_and_length);
        tp->ipcss = xp->lower_setup.ip_fields.ipcss;
        tp->ipcso = xp->lower_setup.ip_fields.ipcso;
        tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
        tp->tucss = xp->upper_setup.tcp_fields.tucss;
        tp->tucso = xp->upper_setup.tcp_fields.tucso;
        tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
        tp->paylen = op & 0xfffff;
        tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
        tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
        tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
        tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
        tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
        tp->tso_frames = 0;
        if (tp->tucso == 0) {	// this is probably wrong
            DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
            tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
        }
        return;
    } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
        // data descriptor
        if (tp->size == 0) {
            tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
        }
        tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
    } else {
        // legacy descriptor
        tp->cptse = 0;
    }

    if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
        (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
        tp->vlan_needed = 1;
        stw_be_p(tp->vlan_header,
                      le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
        stw_be_p(tp->vlan_header + 2,
                      le16_to_cpu(dp->upper.fields.special));
    }
        
    addr = le64_to_cpu(dp->buffer_addr);
    if (tp->tse && tp->cptse) {
        msh = tp->hdr_len + tp->mss;
        do {
            bytes = split_size;
            if (tp->size + bytes > msh)
                bytes = msh - tp->size;

            bytes = MIN(sizeof(tp->data) - tp->size, bytes);
            pci_dma_read(d, addr, tp->data + tp->size, bytes);
            sz = tp->size + bytes;
            if (sz >= tp->hdr_len && tp->size < tp->hdr_len) {
                memmove(tp->header, tp->data, tp->hdr_len);
            }
            tp->size = sz;
            addr += bytes;
            if (sz == msh) {
                xmit_seg(s);
                memmove(tp->data, tp->header, tp->hdr_len);
                tp->size = tp->hdr_len;
            }
        } while (split_size -= bytes);
    } else if (!tp->tse && tp->cptse) {
        // context descriptor TSE is not set, while data descriptor TSE is set
        DBGOUT(TXERR, "TCP segmentation error\n");
    } else {
        split_size = MIN(sizeof(tp->data) - tp->size, split_size);
        pci_dma_read(d, addr, tp->data + tp->size, split_size);
        tp->size += split_size;
    }

    if (!(txd_lower & E1000_TXD_CMD_EOP))
        return;
    if (!(tp->tse && tp->cptse && tp->size < tp->hdr_len)) {
        xmit_seg(s);
    }
    tp->tso_frames = 0;
    tp->sum_needed = 0;
    tp->vlan_needed = 0;
    tp->size = 0;
    tp->cptse = 0;
}

static uint32_t
txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
{
    PCIDevice *d = PCI_DEVICE(s);
    uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);

    if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
        return 0;
    txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
                ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
    dp->upper.data = cpu_to_le32(txd_upper);
    pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
                  &dp->upper, sizeof(dp->upper));
    return E1000_ICR_TXDW;
}

static uint64_t tx_desc_base(E1000State *s)
{
    uint64_t bah = s->mac_reg[TDBAH];
    uint64_t bal = s->mac_reg[TDBAL] & ~0xf;

    return (bah << 32) + bal;
}

static void
start_xmit(E1000State *s)
{
    PCIDevice *d = PCI_DEVICE(s);
    dma_addr_t base;
    struct e1000_tx_desc desc;
    uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;

    if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
        DBGOUT(TX, "tx disabled\n");
        return;
    }

    while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
        base = tx_desc_base(s) +
               sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
        pci_dma_read(d, base, &desc, sizeof(desc));

        DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
               (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
               desc.upper.data);

        process_tx_desc(s, &desc);
        cause |= txdesc_writeback(s, base, &desc);

        if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
            s->mac_reg[TDH] = 0;
        /*
         * the following could happen only if guest sw assigns
         * bogus values to TDT/TDLEN.
         * there's nothing too intelligent we could do about this.
         */
        if (s->mac_reg[TDH] == tdh_start) {
            DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
                   tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
            break;
        }
    }
    set_ics(s, 0, cause);
}

static int
receive_filter(E1000State *s, const uint8_t *buf, int size)
{
    static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
    static const int mta_shift[] = {4, 3, 2, 0};
    uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;

    if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
        uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
        uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
                                     ((vid >> 5) & 0x7f));
        if ((vfta & (1 << (vid & 0x1f))) == 0)
            return 0;
    }

    if (rctl & E1000_RCTL_UPE)			// promiscuous
        return 1;

    if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE))	// promiscuous mcast
        return 1;

    if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
        return 1;

    for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
        if (!(rp[1] & E1000_RAH_AV))
            continue;
        ra[0] = cpu_to_le32(rp[0]);
        ra[1] = cpu_to_le32(rp[1]);
        if (!memcmp(buf, (uint8_t *)ra, 6)) {
            DBGOUT(RXFILTER,
                   "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
                   (int)(rp - s->mac_reg - RA)/2,
                   buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
            return 1;
        }
    }
    DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
           buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);

    f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
    f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
    if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
        return 1;
    DBGOUT(RXFILTER,
           "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
           buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
           (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
           s->mac_reg[MTA + (f >> 5)]);

    return 0;
}

static void
e1000_set_link_status(NetClientState *nc)
{
    E1000State *s = qemu_get_nic_opaque(nc);
    uint32_t old_status = s->mac_reg[STATUS];

    if (nc->link_down) {
        e1000_link_down(s);
    } else {
        if (have_autoneg(s) &&
            !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
            /* emulate auto-negotiation if supported */
            timer_mod(s->autoneg_timer,
                      qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
        } else {
            e1000_link_up(s);
        }
    }

    if (s->mac_reg[STATUS] != old_status)
        set_ics(s, 0, E1000_ICR_LSC);
}

static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
{
    int bufs;
    /* Fast-path short packets */
    if (total_size <= s->rxbuf_size) {
        return s->mac_reg[RDH] != s->mac_reg[RDT];
    }
    if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
        bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
    } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
        bufs = s->mac_reg[RDLEN] /  sizeof(struct e1000_rx_desc) +
            s->mac_reg[RDT] - s->mac_reg[RDH];
    } else {
        return false;
    }
    return total_size <= bufs * s->rxbuf_size;
}

static int
e1000_can_receive(NetClientState *nc)
{
    E1000State *s = qemu_get_nic_opaque(nc);

    return (s->mac_reg[STATUS] & E1000_STATUS_LU) &&
        (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1);
}

static uint64_t rx_desc_base(E1000State *s)
{
    uint64_t bah = s->mac_reg[RDBAH];
    uint64_t bal = s->mac_reg[RDBAL] & ~0xf;

    return (bah << 32) + bal;
}

static ssize_t
e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
{
    E1000State *s = qemu_get_nic_opaque(nc);
    PCIDevice *d = PCI_DEVICE(s);
    struct e1000_rx_desc desc;
    dma_addr_t base;
    unsigned int n, rdt;
    uint32_t rdh_start;
    uint16_t vlan_special = 0;
    uint8_t vlan_status = 0;
    uint8_t min_buf[MIN_BUF_SIZE];
    struct iovec min_iov;
    uint8_t *filter_buf = iov->iov_base;
    size_t size = iov_size(iov, iovcnt);
    size_t iov_ofs = 0;
    size_t desc_offset;
    size_t desc_size;
    size_t total_size;

    if (!(s->mac_reg[STATUS] & E1000_STATUS_LU)) {
        return -1;
    }

    if (!(s->mac_reg[RCTL] & E1000_RCTL_EN)) {
        return -1;
    }

    /* Pad to minimum Ethernet frame length */
    if (size < sizeof(min_buf)) {
        iov_to_buf(iov, iovcnt, 0, min_buf, size);
        memset(&min_buf[size], 0, sizeof(min_buf) - size);
        min_iov.iov_base = filter_buf = min_buf;
        min_iov.iov_len = size = sizeof(min_buf);
        iovcnt = 1;
        iov = &min_iov;
    } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
        /* This is very unlikely, but may happen. */
        iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
        filter_buf = min_buf;
    }

    /* Discard oversized packets if !LPE and !SBP. */
    if ((size > MAXIMUM_ETHERNET_LPE_SIZE ||
        (size > MAXIMUM_ETHERNET_VLAN_SIZE
        && !(s->mac_reg[RCTL] & E1000_RCTL_LPE)))
        && !(s->mac_reg[RCTL] & E1000_RCTL_SBP)) {
        return size;
    }

    if (!receive_filter(s, filter_buf, size)) {
        return size;
    }

    if (vlan_enabled(s) && is_vlan_packet(s, filter_buf)) {
        vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(filter_buf
                                                                + 14)));
        iov_ofs = 4;
        if (filter_buf == iov->iov_base) {
            memmove(filter_buf + 4, filter_buf, 12);
        } else {
            iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
            while (iov->iov_len <= iov_ofs) {
                iov_ofs -= iov->iov_len;
                iov++;
            }
        }
        vlan_status = E1000_RXD_STAT_VP;
        size -= 4;
    }

    rdh_start = s->mac_reg[RDH];
    desc_offset = 0;
    total_size = size + fcs_len(s);
    if (!e1000_has_rxbufs(s, total_size)) {
            set_ics(s, 0, E1000_ICS_RXO);
            return -1;
    }
    do {
        desc_size = total_size - desc_offset;
        if (desc_size > s->rxbuf_size) {
            desc_size = s->rxbuf_size;
        }
        base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
        pci_dma_read(d, base, &desc, sizeof(desc));
        desc.special = vlan_special;
        desc.status |= (vlan_status | E1000_RXD_STAT_DD);
        if (desc.buffer_addr) {
            if (desc_offset < size) {
                size_t iov_copy;
                hwaddr ba = le64_to_cpu(desc.buffer_addr);
                size_t copy_size = size - desc_offset;
                if (copy_size > s->rxbuf_size) {
                    copy_size = s->rxbuf_size;
                }
                do {
                    iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
                    pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
                    copy_size -= iov_copy;
                    ba += iov_copy;
                    iov_ofs += iov_copy;
                    if (iov_ofs == iov->iov_len) {
                        iov++;
                        iov_ofs = 0;
                    }
                } while (copy_size);
            }
            desc_offset += desc_size;
            desc.length = cpu_to_le16(desc_size);
            if (desc_offset >= total_size) {
                desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
            } else {
                /* Guest zeroing out status is not a hardware requirement.
                   Clear EOP in case guest didn't do it. */
                desc.status &= ~E1000_RXD_STAT_EOP;
            }
        } else { // as per intel docs; skip descriptors with null buf addr
            DBGOUT(RX, "Null RX descriptor!!\n");
        }
        pci_dma_write(d, base, &desc, sizeof(desc));

        if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
            s->mac_reg[RDH] = 0;
        /* see comment in start_xmit; same here */
        if (s->mac_reg[RDH] == rdh_start) {
            DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
                   rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
            set_ics(s, 0, E1000_ICS_RXO);
            return -1;
        }
    } while (desc_offset < total_size);

    s->mac_reg[GPRC]++;
    s->mac_reg[TPR]++;
    /* TOR - Total Octets Received:
     * This register includes bytes received in a packet from the <Destination
     * Address> field through the <CRC> field, inclusively.
     */
    n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4;
    if (n < s->mac_reg[TORL])
        s->mac_reg[TORH]++;
    s->mac_reg[TORL] = n;

    n = E1000_ICS_RXT0;
    if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
        rdt += s->mac_reg[RDLEN] / sizeof(desc);
    if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
        s->rxbuf_min_shift)
        n |= E1000_ICS_RXDMT0;

    set_ics(s, 0, n);

    return size;
}

static ssize_t
e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
    const struct iovec iov = {
        .iov_base = (uint8_t *)buf,
        .iov_len = size
    };

    return e1000_receive_iov(nc, &iov, 1);
}

static uint32_t
mac_readreg(E1000State *s, int index)
{
    return s->mac_reg[index];
}

static uint32_t
mac_icr_read(E1000State *s, int index)
{
    uint32_t ret = s->mac_reg[ICR];

    DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
    set_interrupt_cause(s, 0, 0);
    return ret;
}

static uint32_t
mac_read_clr4(E1000State *s, int index)
{
    uint32_t ret = s->mac_reg[index];

    s->mac_reg[index] = 0;
    return ret;
}

static uint32_t
mac_read_clr8(E1000State *s, int index)
{
    uint32_t ret = s->mac_reg[index];

    s->mac_reg[index] = 0;
    s->mac_reg[index-1] = 0;
    return ret;
}

static void
mac_writereg(E1000State *s, int index, uint32_t val)
{
    uint32_t macaddr[2];

    s->mac_reg[index] = val;

    if (index == RA + 1) {
        macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
        macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
        qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
    }
}

static void
set_rdt(E1000State *s, int index, uint32_t val)
{
    s->mac_reg[index] = val & 0xffff;
    if (e1000_has_rxbufs(s, 1)) {
        qemu_flush_queued_packets(qemu_get_queue(s->nic));
    }
}

static void
set_16bit(E1000State *s, int index, uint32_t val)
{
    s->mac_reg[index] = val & 0xffff;
}

static void
set_dlen(E1000State *s, int index, uint32_t val)
{
    s->mac_reg[index] = val & 0xfff80;
}

static void
set_tctl(E1000State *s, int index, uint32_t val)
{
    s->mac_reg[index] = val;
    s->mac_reg[TDT] &= 0xffff;
    start_xmit(s);
}

static void
set_icr(E1000State *s, int index, uint32_t val)
{
    DBGOUT(INTERRUPT, "set_icr %x\n", val);
    set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
}

static void
set_imc(E1000State *s, int index, uint32_t val)
{
    s->mac_reg[IMS] &= ~val;
    set_ics(s, 0, 0);
}

static void
set_ims(E1000State *s, int index, uint32_t val)
{
    s->mac_reg[IMS] |= val;
    set_ics(s, 0, 0);
}

#define getreg(x)	[x] = mac_readreg
static uint32_t (*macreg_readops[])(E1000State *, int) = {
    getreg(PBA),	getreg(RCTL),	getreg(TDH),	getreg(TXDCTL),
    getreg(WUFC),	getreg(TDT),	getreg(CTRL),	getreg(LEDCTL),
    getreg(MANC),	getreg(MDIC),	getreg(SWSM),	getreg(STATUS),
    getreg(TORL),	getreg(TOTL),	getreg(IMS),	getreg(TCTL),
    getreg(RDH),	getreg(RDT),	getreg(VET),	getreg(ICS),
    getreg(TDBAL),	getreg(TDBAH),	getreg(RDBAH),	getreg(RDBAL),
    getreg(TDLEN),      getreg(RDLEN),  getreg(RDTR),   getreg(RADV),
    getreg(TADV),       getreg(ITR),

    [TOTH] = mac_read_clr8,	[TORH] = mac_read_clr8,	[GPRC] = mac_read_clr4,
    [GPTC] = mac_read_clr4,	[TPR] = mac_read_clr4,	[TPT] = mac_read_clr4,
    [ICR] = mac_icr_read,	[EECD] = get_eecd,	[EERD] = flash_eerd_read,
    [CRCERRS ... MPC] = &mac_readreg,
    [RA ... RA+31] = &mac_readreg,
    [MTA ... MTA+127] = &mac_readreg,
    [VFTA ... VFTA+127] = &mac_readreg,
};
enum { NREADOPS = ARRAY_SIZE(macreg_readops) };

#define putreg(x)	[x] = mac_writereg
static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
    putreg(PBA),	putreg(EERD),	putreg(SWSM),	putreg(WUFC),
    putreg(TDBAL),	putreg(TDBAH),	putreg(TXDCTL),	putreg(RDBAH),
    putreg(RDBAL),	putreg(LEDCTL), putreg(VET),
    [TDLEN] = set_dlen,	[RDLEN] = set_dlen,	[TCTL] = set_tctl,
    [TDT] = set_tctl,	[MDIC] = set_mdic,	[ICS] = set_ics,
    [TDH] = set_16bit,	[RDH] = set_16bit,	[RDT] = set_rdt,
    [IMC] = set_imc,	[IMS] = set_ims,	[ICR] = set_icr,
    [EECD] = set_eecd,	[RCTL] = set_rx_control, [CTRL] = set_ctrl,
    [RDTR] = set_16bit, [RADV] = set_16bit,     [TADV] = set_16bit,
    [ITR] = set_16bit,
    [RA ... RA+31] = &mac_writereg,
    [MTA ... MTA+127] = &mac_writereg,
    [VFTA ... VFTA+127] = &mac_writereg,
};

enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };

static void
e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
                 unsigned size)
{
    E1000State *s = opaque;
    unsigned int index = (addr & 0x1ffff) >> 2;

    if (index < NWRITEOPS && macreg_writeops[index]) {
        macreg_writeops[index](s, index, val);
    } else if (index < NREADOPS && macreg_readops[index]) {
        DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", index<<2, val);
    } else {
        DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
               index<<2, val);
    }
}

static uint64_t
e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
    E1000State *s = opaque;
    unsigned int index = (addr & 0x1ffff) >> 2;

    if (index < NREADOPS && macreg_readops[index])
    {
        return macreg_readops[index](s, index);
    }
    DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
    return 0;
}

static const MemoryRegionOps e1000_mmio_ops = {
    .read = e1000_mmio_read,
    .write = e1000_mmio_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .impl = {
        .min_access_size = 4,
        .max_access_size = 4,
    },
};

static uint64_t e1000_io_read(void *opaque, hwaddr addr,
                              unsigned size)
{
    E1000State *s = opaque;

    (void)s;
    return 0;
}

static void e1000_io_write(void *opaque, hwaddr addr,
                           uint64_t val, unsigned size)
{
    E1000State *s = opaque;

    (void)s;
}

static const MemoryRegionOps e1000_io_ops = {
    .read = e1000_io_read,
    .write = e1000_io_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static bool is_version_1(void *opaque, int version_id)
{
    return version_id == 1;
}

static void e1000_pre_save(void *opaque)
{
    E1000State *s = opaque;
    NetClientState *nc = qemu_get_queue(s->nic);

    /* If the mitigation timer is active, emulate a timeout now. */
    if (s->mit_timer_on) {
        e1000_mit_timer(s);
    }

    /*
     * If link is down and auto-negotiation is supported and ongoing,
     * complete auto-negotiation immediately. This allows us to look
     * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
     */
    if (nc->link_down && have_autoneg(s)) {
        s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
    }
}

static int e1000_post_load(void *opaque, int version_id)
{
    E1000State *s = opaque;
    NetClientState *nc = qemu_get_queue(s->nic);

    if (!(s->compat_flags & E1000_FLAG_MIT)) {
        s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
            s->mac_reg[TADV] = 0;
        s->mit_irq_level = false;
    }
    s->mit_ide = 0;
    s->mit_timer_on = false;

    /* nc.link_down can't be migrated, so infer link_down according
     * to link status bit in mac_reg[STATUS].
     * Alternatively, restart link negotiation if it was in progress. */
    nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;

    if (have_autoneg(s) &&
        !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
        nc->link_down = false;
        timer_mod(s->autoneg_timer,
                  qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
    }

    return 0;
}

static bool e1000_mit_state_needed(void *opaque)
{
    E1000State *s = opaque;

    return s->compat_flags & E1000_FLAG_MIT;
}

static const VMStateDescription vmstate_e1000_mit_state = {
    .name = "e1000/mit_state",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(mac_reg[RDTR], E1000State),
        VMSTATE_UINT32(mac_reg[RADV], E1000State),
        VMSTATE_UINT32(mac_reg[TADV], E1000State),
        VMSTATE_UINT32(mac_reg[ITR], E1000State),
        VMSTATE_BOOL(mit_irq_level, E1000State),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_e1000 = {
    .name = "e1000",
    .version_id = 2,
    .minimum_version_id = 1,
    .pre_save = e1000_pre_save,
    .post_load = e1000_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_PCI_DEVICE(parent_obj, E1000State),
        VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
        VMSTATE_UNUSED(4), /* Was mmio_base.  */
        VMSTATE_UINT32(rxbuf_size, E1000State),
        VMSTATE_UINT32(rxbuf_min_shift, E1000State),
        VMSTATE_UINT32(eecd_state.val_in, E1000State),
        VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
        VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
        VMSTATE_UINT16(eecd_state.reading, E1000State),
        VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
        VMSTATE_UINT8(tx.ipcss, E1000State),
        VMSTATE_UINT8(tx.ipcso, E1000State),
        VMSTATE_UINT16(tx.ipcse, E1000State),
        VMSTATE_UINT8(tx.tucss, E1000State),
        VMSTATE_UINT8(tx.tucso, E1000State),
        VMSTATE_UINT16(tx.tucse, E1000State),
        VMSTATE_UINT32(tx.paylen, E1000State),
        VMSTATE_UINT8(tx.hdr_len, E1000State),
        VMSTATE_UINT16(tx.mss, E1000State),
        VMSTATE_UINT16(tx.size, E1000State),
        VMSTATE_UINT16(tx.tso_frames, E1000State),
        VMSTATE_UINT8(tx.sum_needed, E1000State),
        VMSTATE_INT8(tx.ip, E1000State),
        VMSTATE_INT8(tx.tcp, E1000State),
        VMSTATE_BUFFER(tx.header, E1000State),
        VMSTATE_BUFFER(tx.data, E1000State),
        VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
        VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
        VMSTATE_UINT32(mac_reg[CTRL], E1000State),
        VMSTATE_UINT32(mac_reg[EECD], E1000State),
        VMSTATE_UINT32(mac_reg[EERD], E1000State),
        VMSTATE_UINT32(mac_reg[GPRC], E1000State),
        VMSTATE_UINT32(mac_reg[GPTC], E1000State),
        VMSTATE_UINT32(mac_reg[ICR], E1000State),
        VMSTATE_UINT32(mac_reg[ICS], E1000State),
        VMSTATE_UINT32(mac_reg[IMC], E1000State),
        VMSTATE_UINT32(mac_reg[IMS], E1000State),
        VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
        VMSTATE_UINT32(mac_reg[MANC], E1000State),
        VMSTATE_UINT32(mac_reg[MDIC], E1000State),
        VMSTATE_UINT32(mac_reg[MPC], E1000State),
        VMSTATE_UINT32(mac_reg[PBA], E1000State),
        VMSTATE_UINT32(mac_reg[RCTL], E1000State),
        VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
        VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
        VMSTATE_UINT32(mac_reg[RDH], E1000State),
        VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
        VMSTATE_UINT32(mac_reg[RDT], E1000State),
        VMSTATE_UINT32(mac_reg[STATUS], E1000State),
        VMSTATE_UINT32(mac_reg[SWSM], E1000State),
        VMSTATE_UINT32(mac_reg[TCTL], E1000State),
        VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
        VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
        VMSTATE_UINT32(mac_reg[TDH], E1000State),
        VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
        VMSTATE_UINT32(mac_reg[TDT], E1000State),
        VMSTATE_UINT32(mac_reg[TORH], E1000State),
        VMSTATE_UINT32(mac_reg[TORL], E1000State),
        VMSTATE_UINT32(mac_reg[TOTH], E1000State),
        VMSTATE_UINT32(mac_reg[TOTL], E1000State),
        VMSTATE_UINT32(mac_reg[TPR], E1000State),
        VMSTATE_UINT32(mac_reg[TPT], E1000State),
        VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
        VMSTATE_UINT32(mac_reg[WUFC], E1000State),
        VMSTATE_UINT32(mac_reg[VET], E1000State),
        VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
        VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
        VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
        VMSTATE_END_OF_LIST()
    },
    .subsections = (VMStateSubsection[]) {
        {
            .vmsd = &vmstate_e1000_mit_state,
            .needed = e1000_mit_state_needed,
        }, {
            /* empty */
        }
    }
};

/*
 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
 * Note: A valid DevId will be inserted during pci_e1000_init().
 */
static const uint16_t e1000_eeprom_template[64] = {
    0x0000, 0x0000, 0x0000, 0x0000,      0xffff, 0x0000,      0x0000, 0x0000,
    0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
    0x0008, 0x2000, 0x7e14, 0x0048,      0x1000, 0x00d8,      0x0000, 0x2700,
    0x6cc9, 0x3150, 0x0722, 0x040b,      0x0984, 0x0000,      0xc000, 0x0706,
    0x1008, 0x0000, 0x0f04, 0x7fff,      0x4d01, 0xffff,      0xffff, 0xffff,
    0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
    0x0100, 0x4000, 0x121c, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff,
    0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0x0000,
};

/* PCI interface */

static void
e1000_mmio_setup(E1000State *d)
{
    int i;
    const uint32_t excluded_regs[] = {
        E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
        E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
    };

    memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
                          "e1000-mmio", PNPMMIO_SIZE);
    memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
    for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
        memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
                                     excluded_regs[i+1] - excluded_regs[i] - 4);
    memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
}

static void
e1000_cleanup(NetClientState *nc)
{
    E1000State *s = qemu_get_nic_opaque(nc);

    s->nic = NULL;
}

static void
pci_e1000_uninit(PCIDevice *dev)
{
    E1000State *d = E1000(dev);

    timer_del(d->autoneg_timer);
    timer_free(d->autoneg_timer);
    timer_del(d->mit_timer);
    timer_free(d->mit_timer);
    qemu_del_nic(d->nic);
}

static NetClientInfo net_e1000_info = {
    .type = NET_CLIENT_OPTIONS_KIND_NIC,
    .size = sizeof(NICState),
    .can_receive = e1000_can_receive,
    .receive = e1000_receive,
    .receive_iov = e1000_receive_iov,
    .cleanup = e1000_cleanup,
    .link_status_changed = e1000_set_link_status,
};

static int pci_e1000_init(PCIDevice *pci_dev)
{
    DeviceState *dev = DEVICE(pci_dev);
    E1000State *d = E1000(pci_dev);
    PCIDeviceClass *pdc = PCI_DEVICE_GET_CLASS(pci_dev);
    uint8_t *pci_conf;
    uint16_t checksum = 0;
    int i;
    uint8_t *macaddr;

    pci_conf = pci_dev->config;

    /* TODO: RST# value should be 0, PCI spec 6.2.4 */
    pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;

    pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */

    e1000_mmio_setup(d);

    pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);

    pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);

    memmove(d->eeprom_data, e1000_eeprom_template,
        sizeof e1000_eeprom_template);
    qemu_macaddr_default_if_unset(&d->conf.macaddr);
    macaddr = d->conf.macaddr.a;
    for (i = 0; i < 3; i++)
        d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
    d->eeprom_data[11] = d->eeprom_data[13] = pdc->device_id;
    for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
        checksum += d->eeprom_data[i];
    checksum = (uint16_t) EEPROM_SUM - checksum;
    d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;

    d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
                          object_get_typename(OBJECT(d)), dev->id, d);

    qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);

    d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
    d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);

    return 0;
}

static void qdev_e1000_reset(DeviceState *dev)
{
    E1000State *d = E1000(dev);
    e1000_reset(d);
}

static Property e1000_properties[] = {
    DEFINE_NIC_PROPERTIES(E1000State, conf),
    DEFINE_PROP_BIT("autonegotiation", E1000State,
                    compat_flags, E1000_FLAG_AUTONEG_BIT, true),
    DEFINE_PROP_BIT("mitigation", E1000State,
                    compat_flags, E1000_FLAG_MIT_BIT, true),
    DEFINE_PROP_END_OF_LIST(),
};

typedef struct E1000Info {
    const char *name;
    uint16_t   device_id;
    uint8_t    revision;
    uint16_t   phy_id2;
} E1000Info;

static void e1000_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
    E1000BaseClass *e = E1000_DEVICE_CLASS(klass);
    const E1000Info *info = data;

    k->init = pci_e1000_init;
    k->exit = pci_e1000_uninit;
    k->romfile = "efi-e1000.rom";
    k->vendor_id = PCI_VENDOR_ID_INTEL;
    k->device_id = info->device_id;
    k->revision = info->revision;
    e->phy_id2 = info->phy_id2;
    k->class_id = PCI_CLASS_NETWORK_ETHERNET;
    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
    dc->desc = "Intel Gigabit Ethernet";
    dc->reset = qdev_e1000_reset;
    dc->vmsd = &vmstate_e1000;
    dc->props = e1000_properties;
}

static void e1000_instance_init(Object *obj)
{
    E1000State *n = E1000(obj);
    device_add_bootindex_property(obj, &n->conf.bootindex,
                                  "bootindex", "/ethernet-phy@0",
                                  DEVICE(n), NULL);
}

static const TypeInfo e1000_base_info = {
    .name          = TYPE_E1000_BASE,
    .parent        = TYPE_PCI_DEVICE,
    .instance_size = sizeof(E1000State),
    .instance_init = e1000_instance_init,
    .class_size    = sizeof(E1000BaseClass),
    .abstract      = true,
};

static const E1000Info e1000_devices[] = {
    {
        .name      = "e1000-82540em",
        .device_id = E1000_DEV_ID_82540EM,
        .revision  = 0x03,
        .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
    },
    {
        .name      = "e1000-82544gc",
        .device_id = E1000_DEV_ID_82544GC_COPPER,
        .revision  = 0x03,
        .phy_id2   = E1000_PHY_ID2_82544x,
    },
    {
        .name      = "e1000-82545em",
        .device_id = E1000_DEV_ID_82545EM_COPPER,
        .revision  = 0x03,
        .phy_id2   = E1000_PHY_ID2_8254xx_DEFAULT,
    },
};

static const TypeInfo e1000_default_info = {
    .name          = "e1000",
    .parent        = "e1000-82540em",
};

static void e1000_register_types(void)
{
    int i;

    type_register_static(&e1000_base_info);
    for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
        const E1000Info *info = &e1000_devices[i];
        TypeInfo type_info = {};

        type_info.name = info->name;
        type_info.parent = TYPE_E1000_BASE;
        type_info.class_data = (void *)info;
        type_info.class_init = e1000_class_init;
        type_info.instance_init = e1000_instance_init;

        type_register(&type_info);
    }
    type_register_static(&e1000_default_info);
}

type_init(e1000_register_types)