1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
|
/*
* Status and system control registers for Xilinx Zynq Platform
*
* Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
* Copyright (c) 2012 PetaLogix Pty Ltd.
* Based on hw/arm_sysctl.c, written by Paul Brook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/timer.h"
#include "sysemu/runstate.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/registerfields.h"
#include "hw/qdev-clock.h"
#include "qom/object.h"
#ifndef ZYNQ_SLCR_ERR_DEBUG
#define ZYNQ_SLCR_ERR_DEBUG 0
#endif
#define DB_PRINT(...) do { \
if (ZYNQ_SLCR_ERR_DEBUG) { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} \
} while (0)
#define XILINX_LOCK_KEY 0x767b
#define XILINX_UNLOCK_KEY 0xdf0d
REG32(SCL, 0x000)
REG32(LOCK, 0x004)
REG32(UNLOCK, 0x008)
REG32(LOCKSTA, 0x00c)
REG32(ARM_PLL_CTRL, 0x100)
REG32(DDR_PLL_CTRL, 0x104)
REG32(IO_PLL_CTRL, 0x108)
/* fields for [ARM|DDR|IO]_PLL_CTRL registers */
FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
REG32(PLL_STATUS, 0x10c)
REG32(ARM_PLL_CFG, 0x110)
REG32(DDR_PLL_CFG, 0x114)
REG32(IO_PLL_CFG, 0x118)
REG32(ARM_CLK_CTRL, 0x120)
REG32(DDR_CLK_CTRL, 0x124)
REG32(DCI_CLK_CTRL, 0x128)
REG32(APER_CLK_CTRL, 0x12c)
REG32(USB0_CLK_CTRL, 0x130)
REG32(USB1_CLK_CTRL, 0x134)
REG32(GEM0_RCLK_CTRL, 0x138)
REG32(GEM1_RCLK_CTRL, 0x13c)
REG32(GEM0_CLK_CTRL, 0x140)
REG32(GEM1_CLK_CTRL, 0x144)
REG32(SMC_CLK_CTRL, 0x148)
REG32(LQSPI_CLK_CTRL, 0x14c)
REG32(SDIO_CLK_CTRL, 0x150)
REG32(UART_CLK_CTRL, 0x154)
FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
FIELD(UART_CLK_CTRL, SRCSEL, 4, 2)
FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
REG32(SPI_CLK_CTRL, 0x158)
REG32(CAN_CLK_CTRL, 0x15c)
REG32(CAN_MIOCLK_CTRL, 0x160)
REG32(DBG_CLK_CTRL, 0x164)
REG32(PCAP_CLK_CTRL, 0x168)
REG32(TOPSW_CLK_CTRL, 0x16c)
#define FPGA_CTRL_REGS(n, start) \
REG32(FPGA ## n ## _CLK_CTRL, (start)) \
REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\
REG32(FPGA ## n ## _THR_STA, (start) + 0xc)
FPGA_CTRL_REGS(0, 0x170)
FPGA_CTRL_REGS(1, 0x180)
FPGA_CTRL_REGS(2, 0x190)
FPGA_CTRL_REGS(3, 0x1a0)
REG32(BANDGAP_TRIP, 0x1b8)
REG32(PLL_PREDIVISOR, 0x1c0)
REG32(CLK_621_TRUE, 0x1c4)
REG32(PSS_RST_CTRL, 0x200)
FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
REG32(DDR_RST_CTRL, 0x204)
REG32(TOPSW_RESET_CTRL, 0x208)
REG32(DMAC_RST_CTRL, 0x20c)
REG32(USB_RST_CTRL, 0x210)
REG32(GEM_RST_CTRL, 0x214)
REG32(SDIO_RST_CTRL, 0x218)
REG32(SPI_RST_CTRL, 0x21c)
REG32(CAN_RST_CTRL, 0x220)
REG32(I2C_RST_CTRL, 0x224)
REG32(UART_RST_CTRL, 0x228)
REG32(GPIO_RST_CTRL, 0x22c)
REG32(LQSPI_RST_CTRL, 0x230)
REG32(SMC_RST_CTRL, 0x234)
REG32(OCM_RST_CTRL, 0x238)
REG32(FPGA_RST_CTRL, 0x240)
REG32(A9_CPU_RST_CTRL, 0x244)
REG32(RS_AWDT_CTRL, 0x24c)
REG32(RST_REASON, 0x250)
REG32(REBOOT_STATUS, 0x258)
REG32(BOOT_MODE, 0x25c)
REG32(APU_CTRL, 0x300)
REG32(WDT_CLK_SEL, 0x304)
REG32(TZ_DMA_NS, 0x440)
REG32(TZ_DMA_IRQ_NS, 0x444)
REG32(TZ_DMA_PERIPH_NS, 0x448)
REG32(PSS_IDCODE, 0x530)
REG32(DDR_URGENT, 0x600)
REG32(DDR_CAL_START, 0x60c)
REG32(DDR_REF_START, 0x614)
REG32(DDR_CMD_STA, 0x618)
REG32(DDR_URGENT_SEL, 0x61c)
REG32(DDR_DFI_STATUS, 0x620)
REG32(MIO, 0x700)
#define MIO_LENGTH 54
REG32(MIO_LOOPBACK, 0x804)
REG32(MIO_MST_TRI0, 0x808)
REG32(MIO_MST_TRI1, 0x80c)
REG32(SD0_WP_CD_SEL, 0x830)
REG32(SD1_WP_CD_SEL, 0x834)
REG32(LVL_SHFTR_EN, 0x900)
REG32(OCM_CFG, 0x910)
REG32(CPU_RAM, 0xa00)
REG32(IOU, 0xa30)
REG32(DMAC_RAM, 0xa50)
REG32(AFI0, 0xa60)
REG32(AFI1, 0xa6c)
REG32(AFI2, 0xa78)
REG32(AFI3, 0xa84)
#define AFI_LENGTH 3
REG32(OCM, 0xa90)
REG32(DEVCI_RAM, 0xaa0)
REG32(CSG_RAM, 0xab0)
REG32(GPIOB_CTRL, 0xb00)
REG32(GPIOB_CFG_CMOS18, 0xb04)
REG32(GPIOB_CFG_CMOS25, 0xb08)
REG32(GPIOB_CFG_CMOS33, 0xb0c)
REG32(GPIOB_CFG_HSTL, 0xb14)
REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
REG32(DDRIOB, 0xb40)
#define DDRIOB_LENGTH 14
#define ZYNQ_SLCR_MMIO_SIZE 0x1000
#define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4)
#define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr"
typedef struct ZynqSLCRState ZynqSLCRState;
#define ZYNQ_SLCR(obj) OBJECT_CHECK(ZynqSLCRState, (obj), TYPE_ZYNQ_SLCR)
struct ZynqSLCRState {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t regs[ZYNQ_SLCR_NUM_REGS];
Clock *ps_clk;
Clock *uart0_ref_clk;
Clock *uart1_ref_clk;
};
/*
* return the output frequency of ARM/DDR/IO pll
* using input frequency and PLL_CTRL register
*/
static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
{
uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
/* first, check if pll is bypassed */
if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
return input;
}
/* is pll disabled ? */
if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
return 0;
}
/* frequency multiplier -> period division */
return input / mult;
}
/*
* return the output period of a clock given:
* + the periods in an array corresponding to input mux selector
* + the register xxx_CLK_CTRL value
* + enable bit index in ctrl register
*
* This function makes the assumption that the ctrl_reg value is organized as
* follows:
* + bits[13:8] clock frequency divisor
* + bits[5:4] clock mux selector (index in array)
* + bits[index] clock enable
*/
static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
uint32_t ctrl_reg,
unsigned index)
{
uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
/* first, check if clock is disabled */
if (((ctrl_reg >> index) & 1u) == 0) {
return 0;
}
/*
* according to the Zynq technical ref. manual UG585 v1.12.2 in
* Clocks chapter, section 25.10.1 page 705:
* "The 6-bit divider provides a divide range of 1 to 63"
* We follow here what is implemented in linux kernel and consider
* the 0 value as a bypass (no division).
*/
/* frequency divisor -> period multiplication */
return periods[srcsel] * (divisor ? divisor : 1u);
}
/*
* macro helper around zynq_slcr_compute_clock to avoid repeating
* the register name.
*/
#define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
zynq_slcr_compute_clock((plls), (state)->regs[reg], \
reg ## _ ## enable_field ## _SHIFT)
/**
* Compute and set the ouputs clocks periods.
* But do not propagate them further. Connected clocks
* will not receive any updates (See zynq_slcr_compute_clocks())
*/
static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
{
uint64_t ps_clk = clock_get(s->ps_clk);
/* consider outputs clocks are disabled while in reset */
if (device_is_in_reset(DEVICE(s))) {
ps_clk = 0;
}
uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
/* compute uartX reference clocks */
clock_set(s->uart0_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
clock_set(s->uart1_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
}
/**
* Propagate the outputs clocks.
* zynq_slcr_compute_clocks() should have been called before
* to configure them.
*/
static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
{
clock_propagate(s->uart0_ref_clk);
clock_propagate(s->uart1_ref_clk);
}
static void zynq_slcr_ps_clk_callback(void *opaque)
{
ZynqSLCRState *s = (ZynqSLCRState *) opaque;
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_init(Object *obj, ResetType type)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
int i;
DB_PRINT("RESET\n");
s->regs[R_LOCKSTA] = 1;
/* 0x100 - 0x11C */
s->regs[R_ARM_PLL_CTRL] = 0x0001A008;
s->regs[R_DDR_PLL_CTRL] = 0x0001A008;
s->regs[R_IO_PLL_CTRL] = 0x0001A008;
s->regs[R_PLL_STATUS] = 0x0000003F;
s->regs[R_ARM_PLL_CFG] = 0x00014000;
s->regs[R_DDR_PLL_CFG] = 0x00014000;
s->regs[R_IO_PLL_CFG] = 0x00014000;
/* 0x120 - 0x16C */
s->regs[R_ARM_CLK_CTRL] = 0x1F000400;
s->regs[R_DDR_CLK_CTRL] = 0x18400003;
s->regs[R_DCI_CLK_CTRL] = 0x01E03201;
s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD;
s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941;
s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01;
s->regs[R_SMC_CLK_CTRL] = 0x00003C01;
s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
s->regs[R_SDIO_CLK_CTRL] = 0x00001E03;
s->regs[R_UART_CLK_CTRL] = 0x00003F03;
s->regs[R_SPI_CLK_CTRL] = 0x00003F03;
s->regs[R_CAN_CLK_CTRL] = 0x00501903;
s->regs[R_DBG_CLK_CTRL] = 0x00000F03;
s->regs[R_PCAP_CLK_CTRL] = 0x00000F01;
/* 0x170 - 0x1AC */
s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
= s->regs[R_FPGA2_CLK_CTRL]
= s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
= s->regs[R_FPGA2_THR_STA]
= s->regs[R_FPGA3_THR_STA] = 0x00010000;
/* 0x1B0 - 0x1D8 */
s->regs[R_BANDGAP_TRIP] = 0x0000001F;
s->regs[R_PLL_PREDIVISOR] = 0x00000001;
s->regs[R_CLK_621_TRUE] = 0x00000001;
/* 0x200 - 0x25C */
s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F;
s->regs[R_RST_REASON] = 0x00000040;
s->regs[R_BOOT_MODE] = 0x00000001;
/* 0x700 - 0x7D4 */
for (i = 0; i < 54; i++) {
s->regs[R_MIO + i] = 0x00001601;
}
for (i = 2; i <= 8; i++) {
s->regs[R_MIO + i] = 0x00000601;
}
s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
= s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
= 0x00010101;
s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
s->regs[R_CPU_RAM + 6] = 0x00000001;
s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
= s->regs[R_IOU + 3] = 0x09090909;
s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
s->regs[R_IOU + 6] = 0x00000909;
s->regs[R_DMAC_RAM] = 0x00000009;
s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
= s->regs[R_AFI3 + 2] = 0x00000909;
s->regs[R_OCM + 0] = 0x01010101;
s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
s->regs[R_DEVCI_RAM] = 0x00000909;
s->regs[R_CSG_RAM] = 0x00000001;
s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
= s->regs[R_DDRIOB + 3] = 0x00000e00;
s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
= 0x00000e00;
s->regs[R_DDRIOB + 12] = 0x00000021;
}
static void zynq_slcr_reset_hold(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will disable all output clocks */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_exit(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will compute output clocks according to ps_clk and registers */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
{
switch (offset) {
case R_LOCK:
case R_UNLOCK:
case R_DDR_CAL_START:
case R_DDR_REF_START:
return !rnw; /* Write only */
case R_LOCKSTA:
case R_FPGA0_THR_STA:
case R_FPGA1_THR_STA:
case R_FPGA2_THR_STA:
case R_FPGA3_THR_STA:
case R_BOOT_MODE:
case R_PSS_IDCODE:
case R_DDR_CMD_STA:
case R_DDR_DFI_STATUS:
case R_PLL_STATUS:
return rnw;/* read only */
case R_SCL:
case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
case R_BANDGAP_TRIP:
case R_PLL_PREDIVISOR:
case R_CLK_621_TRUE:
case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
case R_RS_AWDT_CTRL:
case R_RST_REASON:
case R_REBOOT_STATUS:
case R_APU_CTRL:
case R_WDT_CLK_SEL:
case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
case R_DDR_URGENT:
case R_DDR_URGENT_SEL:
case R_MIO ... R_MIO + MIO_LENGTH - 1:
case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
case R_SD0_WP_CD_SEL:
case R_SD1_WP_CD_SEL:
case R_LVL_SHFTR_EN:
case R_OCM_CFG:
case R_CPU_RAM:
case R_IOU:
case R_DMAC_RAM:
case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
case R_OCM:
case R_DEVCI_RAM:
case R_CSG_RAM:
case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
case R_GPIOB_CFG_HSTL:
case R_GPIOB_DRVR_BIAS_CTRL:
case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
return true;
default:
return false;
}
}
static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
unsigned size)
{
ZynqSLCRState *s = opaque;
offset /= 4;
uint32_t ret = s->regs[offset];
if (!zynq_slcr_check_offset(offset, true)) {
qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
" addr %" HWADDR_PRIx "\n", offset * 4);
}
DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
return ret;
}
static void zynq_slcr_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
ZynqSLCRState *s = (ZynqSLCRState *)opaque;
offset /= 4;
DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
if (!zynq_slcr_check_offset(offset, false)) {
qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
"addr %" HWADDR_PRIx "\n", offset * 4);
return;
}
switch (offset) {
case R_SCL:
s->regs[R_SCL] = val & 0x1;
return;
case R_LOCK:
if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
(unsigned)val & 0xFFFF);
s->regs[R_LOCKSTA] = 1;
} else {
DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
(int)offset, (unsigned)val & 0xFFFF);
}
return;
case R_UNLOCK:
if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
(unsigned)val & 0xFFFF);
s->regs[R_LOCKSTA] = 0;
} else {
DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
(int)offset, (unsigned)val & 0xFFFF);
}
return;
}
if (s->regs[R_LOCKSTA]) {
qemu_log_mask(LOG_GUEST_ERROR,
"SCLR registers are locked. Unlock them first\n");
return;
}
s->regs[offset] = val;
switch (offset) {
case R_PSS_RST_CTRL:
if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
case R_IO_PLL_CTRL:
case R_ARM_PLL_CTRL:
case R_DDR_PLL_CTRL:
case R_UART_CLK_CTRL:
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
break;
}
}
static const MemoryRegionOps slcr_ops = {
.read = zynq_slcr_read,
.write = zynq_slcr_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const ClockPortInitArray zynq_slcr_clocks = {
QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback),
QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
QDEV_CLOCK_END
};
static void zynq_slcr_init(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
ZYNQ_SLCR_MMIO_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
}
static const VMStateDescription vmstate_zynq_slcr = {
.name = "zynq_slcr",
.version_id = 3,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
VMSTATE_END_OF_LIST()
}
};
static void zynq_slcr_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->vmsd = &vmstate_zynq_slcr;
rc->phases.enter = zynq_slcr_reset_init;
rc->phases.hold = zynq_slcr_reset_hold;
rc->phases.exit = zynq_slcr_reset_exit;
}
static const TypeInfo zynq_slcr_info = {
.class_init = zynq_slcr_class_init,
.name = TYPE_ZYNQ_SLCR,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ZynqSLCRState),
.instance_init = zynq_slcr_init,
};
static void zynq_slcr_register_types(void)
{
type_register_static(&zynq_slcr_info);
}
type_init(zynq_slcr_register_types)
|