aboutsummaryrefslogtreecommitdiff
path: root/hw/misc/macio/cuda.c
blob: d65a36a912585fc743120888a7b903deecec3ec8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*
 * QEMU PowerMac CUDA device support
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/ppc/mac.h"
#include "hw/input/adb.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"

/* XXX: implement all timer modes */

/* debug CUDA */
//#define DEBUG_CUDA

/* debug CUDA packets */
//#define DEBUG_CUDA_PACKET

#ifdef DEBUG_CUDA
#define CUDA_DPRINTF(fmt, ...)                                  \
    do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
#else
#define CUDA_DPRINTF(fmt, ...)
#endif

/* Bits in B data register: all active low */
#define TREQ		0x08		/* Transfer request (input) */
#define TACK		0x10		/* Transfer acknowledge (output) */
#define TIP		0x20		/* Transfer in progress (output) */

/* Bits in ACR */
#define SR_CTRL		0x1c		/* Shift register control bits */
#define SR_EXT		0x0c		/* Shift on external clock */
#define SR_OUT		0x10		/* Shift out if 1 */

/* Bits in IFR and IER */
#define IER_SET		0x80		/* set bits in IER */
#define IER_CLR		0		/* clear bits in IER */
#define SR_INT		0x04		/* Shift register full/empty */
#define SR_DATA_INT	0x08
#define SR_CLOCK_INT	0x10
#define T1_INT          0x40            /* Timer 1 interrupt */
#define T2_INT          0x20            /* Timer 2 interrupt */

/* Bits in ACR */
#define T1MODE          0xc0            /* Timer 1 mode */
#define T1MODE_CONT     0x40            /*  continuous interrupts */

/* commands (1st byte) */
#define ADB_PACKET	0
#define CUDA_PACKET	1
#define ERROR_PACKET	2
#define TIMER_PACKET	3
#define POWER_PACKET	4
#define MACIIC_PACKET	5
#define PMU_PACKET	6


/* CUDA commands (2nd byte) */
#define CUDA_WARM_START			0x0
#define CUDA_AUTOPOLL			0x1
#define CUDA_GET_6805_ADDR		0x2
#define CUDA_GET_TIME			0x3
#define CUDA_GET_PRAM			0x7
#define CUDA_SET_6805_ADDR		0x8
#define CUDA_SET_TIME			0x9
#define CUDA_POWERDOWN			0xa
#define CUDA_POWERUP_TIME		0xb
#define CUDA_SET_PRAM			0xc
#define CUDA_MS_RESET			0xd
#define CUDA_SEND_DFAC			0xe
#define CUDA_BATTERY_SWAP_SENSE		0x10
#define CUDA_RESET_SYSTEM		0x11
#define CUDA_SET_IPL			0x12
#define CUDA_FILE_SERVER_FLAG		0x13
#define CUDA_SET_AUTO_RATE		0x14
#define CUDA_GET_AUTO_RATE		0x16
#define CUDA_SET_DEVICE_LIST		0x19
#define CUDA_GET_DEVICE_LIST		0x1a
#define CUDA_SET_ONE_SECOND_MODE	0x1b
#define CUDA_SET_POWER_MESSAGES		0x21
#define CUDA_GET_SET_IIC		0x22
#define CUDA_WAKEUP			0x23
#define CUDA_TIMER_TICKLE		0x24
#define CUDA_COMBINED_FORMAT_IIC	0x25

#define CUDA_TIMER_FREQ (4700000 / 6)

/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
#define RTC_OFFSET                      2082844800

/* CUDA registers */
#define CUDA_REG_B       0x00
#define CUDA_REG_A       0x01
#define CUDA_REG_DIRB    0x02
#define CUDA_REG_DIRA    0x03
#define CUDA_REG_T1CL    0x04
#define CUDA_REG_T1CH    0x05
#define CUDA_REG_T1LL    0x06
#define CUDA_REG_T1LH    0x07
#define CUDA_REG_T2CL    0x08
#define CUDA_REG_T2CH    0x09
#define CUDA_REG_SR      0x0a
#define CUDA_REG_ACR     0x0b
#define CUDA_REG_PCR     0x0c
#define CUDA_REG_IFR     0x0d
#define CUDA_REG_IER     0x0e
#define CUDA_REG_ANH     0x0f

static void cuda_update(CUDAState *s);
static void cuda_receive_packet_from_host(CUDAState *s,
                                          const uint8_t *data, int len);
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
                              int64_t current_time);

static void cuda_update_irq(CUDAState *s)
{
    if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
        qemu_irq_raise(s->irq);
    } else {
        qemu_irq_lower(s->irq);
    }
}

static uint64_t get_tb(uint64_t time, uint64_t freq)
{
    return muldiv64(time, freq, get_ticks_per_sec());
}

static unsigned int get_counter(CUDATimer *ti)
{
    int64_t d;
    unsigned int counter;
    uint64_t tb_diff;
    uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);

    /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
    tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
    d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);

    if (ti->index == 0) {
        /* the timer goes down from latch to -1 (period of latch + 2) */
        if (d <= (ti->counter_value + 1)) {
            counter = (ti->counter_value - d) & 0xffff;
        } else {
            counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
            counter = (ti->latch - counter) & 0xffff;
        }
    } else {
        counter = (ti->counter_value - d) & 0xffff;
    }
    return counter;
}

static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
{
    CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
    ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           s->frequency);
    ti->counter_value = val;
    cuda_timer_update(s, ti, ti->load_time);
}

static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
{
    int64_t d, next_time;
    unsigned int counter;

    /* current counter value */
    d = muldiv64(current_time - s->load_time,
                 CUDA_TIMER_FREQ, get_ticks_per_sec());
    /* the timer goes down from latch to -1 (period of latch + 2) */
    if (d <= (s->counter_value + 1)) {
        counter = (s->counter_value - d) & 0xffff;
    } else {
        counter = (d - (s->counter_value + 1)) % (s->latch + 2);
        counter = (s->latch - counter) & 0xffff;
    }

    /* Note: we consider the irq is raised on 0 */
    if (counter == 0xffff) {
        next_time = d + s->latch + 1;
    } else if (counter == 0) {
        next_time = d + s->latch + 2;
    } else {
        next_time = d + counter;
    }
    CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
                 s->latch, d, next_time - d);
    next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
        s->load_time;
    if (next_time <= current_time)
        next_time = current_time + 1;
    return next_time;
}

static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
                              int64_t current_time)
{
    if (!ti->timer)
        return;
    if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
        timer_del(ti->timer);
    } else {
        ti->next_irq_time = get_next_irq_time(ti, current_time);
        timer_mod(ti->timer, ti->next_irq_time);
    }
}

static void cuda_timer1(void *opaque)
{
    CUDAState *s = opaque;
    CUDATimer *ti = &s->timers[0];

    cuda_timer_update(s, ti, ti->next_irq_time);
    s->ifr |= T1_INT;
    cuda_update_irq(s);
}

static void cuda_timer2(void *opaque)
{
    CUDAState *s = opaque;
    CUDATimer *ti = &s->timers[1];

    cuda_timer_update(s, ti, ti->next_irq_time);
    s->ifr |= T2_INT;
    cuda_update_irq(s);
}

static void cuda_set_sr_int(void *opaque)
{
    CUDAState *s = opaque;

    CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
    s->ifr |= SR_INT;
    cuda_update_irq(s);
}

static void cuda_delay_set_sr_int(CUDAState *s)
{
    int64_t expire;

    if (s->dirb == 0xff) {
        /* Not in Mac OS, fire the IRQ directly */
        cuda_set_sr_int(s);
        return;
    }

    CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);

    expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
    timer_mod(s->sr_delay_timer, expire);
}

static uint32_t cuda_readb(void *opaque, hwaddr addr)
{
    CUDAState *s = opaque;
    uint32_t val;

    addr = (addr >> 9) & 0xf;
    switch(addr) {
    case CUDA_REG_B:
        val = s->b;
        break;
    case CUDA_REG_A:
        val = s->a;
        break;
    case CUDA_REG_DIRB:
        val = s->dirb;
        break;
    case CUDA_REG_DIRA:
        val = s->dira;
        break;
    case CUDA_REG_T1CL:
        val = get_counter(&s->timers[0]) & 0xff;
        s->ifr &= ~T1_INT;
        cuda_update_irq(s);
        break;
    case CUDA_REG_T1CH:
        val = get_counter(&s->timers[0]) >> 8;
        cuda_update_irq(s);
        break;
    case CUDA_REG_T1LL:
        val = s->timers[0].latch & 0xff;
        break;
    case CUDA_REG_T1LH:
        /* XXX: check this */
        val = (s->timers[0].latch >> 8) & 0xff;
        break;
    case CUDA_REG_T2CL:
        val = get_counter(&s->timers[1]) & 0xff;
        s->ifr &= ~T2_INT;
        cuda_update_irq(s);
        break;
    case CUDA_REG_T2CH:
        val = get_counter(&s->timers[1]) >> 8;
        break;
    case CUDA_REG_SR:
        val = s->sr;
        s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
        cuda_update_irq(s);
        break;
    case CUDA_REG_ACR:
        val = s->acr;
        break;
    case CUDA_REG_PCR:
        val = s->pcr;
        break;
    case CUDA_REG_IFR:
        val = s->ifr;
        if (s->ifr & s->ier) {
            val |= 0x80;
        }
        break;
    case CUDA_REG_IER:
        val = s->ier | 0x80;
        break;
    default:
    case CUDA_REG_ANH:
        val = s->anh;
        break;
    }
    if (addr != CUDA_REG_IFR || val != 0) {
        CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
    }

    return val;
}

static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
{
    CUDAState *s = opaque;

    addr = (addr >> 9) & 0xf;
    CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);

    switch(addr) {
    case CUDA_REG_B:
        s->b = val;
        cuda_update(s);
        break;
    case CUDA_REG_A:
        s->a = val;
        break;
    case CUDA_REG_DIRB:
        s->dirb = val;
        break;
    case CUDA_REG_DIRA:
        s->dira = val;
        break;
    case CUDA_REG_T1CL:
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
        cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
        break;
    case CUDA_REG_T1CH:
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
        s->ifr &= ~T1_INT;
        set_counter(s, &s->timers[0], s->timers[0].latch);
        break;
    case CUDA_REG_T1LL:
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
        cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
        break;
    case CUDA_REG_T1LH:
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
        s->ifr &= ~T1_INT;
        cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
        break;
    case CUDA_REG_T2CL:
        s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
        break;
    case CUDA_REG_T2CH:
        /* To ensure T2 generates an interrupt on zero crossing with the
           common timer code, write the value directly from the latch to
           the counter */
        s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
        s->ifr &= ~T2_INT;
        set_counter(s, &s->timers[1], s->timers[1].latch);
        break;
    case CUDA_REG_SR:
        s->sr = val;
        break;
    case CUDA_REG_ACR:
        s->acr = val;
        cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
        cuda_update(s);
        break;
    case CUDA_REG_PCR:
        s->pcr = val;
        break;
    case CUDA_REG_IFR:
        /* reset bits */
        s->ifr &= ~val;
        cuda_update_irq(s);
        break;
    case CUDA_REG_IER:
        if (val & IER_SET) {
            /* set bits */
            s->ier |= val & 0x7f;
        } else {
            /* reset bits */
            s->ier &= ~val;
        }
        cuda_update_irq(s);
        break;
    default:
    case CUDA_REG_ANH:
        s->anh = val;
        break;
    }
}

/* NOTE: TIP and TREQ are negated */
static void cuda_update(CUDAState *s)
{
    int packet_received, len;

    packet_received = 0;
    if (!(s->b & TIP)) {
        /* transfer requested from host */

        if (s->acr & SR_OUT) {
            /* data output */
            if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
                if (s->data_out_index < sizeof(s->data_out)) {
                    CUDA_DPRINTF("send: %02x\n", s->sr);
                    s->data_out[s->data_out_index++] = s->sr;
                    cuda_delay_set_sr_int(s);
                }
            }
        } else {
            if (s->data_in_index < s->data_in_size) {
                /* data input */
                if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
                    s->sr = s->data_in[s->data_in_index++];
                    CUDA_DPRINTF("recv: %02x\n", s->sr);
                    /* indicate end of transfer */
                    if (s->data_in_index >= s->data_in_size) {
                        s->b = (s->b | TREQ);
                    }
                    cuda_delay_set_sr_int(s);
                }
            }
        }
    } else {
        /* no transfer requested: handle sync case */
        if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
            /* update TREQ state each time TACK change state */
            if (s->b & TACK)
                s->b = (s->b | TREQ);
            else
                s->b = (s->b & ~TREQ);
            cuda_delay_set_sr_int(s);
        } else {
            if (!(s->last_b & TIP)) {
                /* handle end of host to cuda transfer */
                packet_received = (s->data_out_index > 0);
                /* always an IRQ at the end of transfer */
                cuda_delay_set_sr_int(s);
            }
            /* signal if there is data to read */
            if (s->data_in_index < s->data_in_size) {
                s->b = (s->b & ~TREQ);
            }
        }
    }

    s->last_acr = s->acr;
    s->last_b = s->b;

    /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
       recursively */
    if (packet_received) {
        len = s->data_out_index;
        s->data_out_index = 0;
        cuda_receive_packet_from_host(s, s->data_out, len);
    }
}

static void cuda_send_packet_to_host(CUDAState *s,
                                     const uint8_t *data, int len)
{
#ifdef DEBUG_CUDA_PACKET
    {
        int i;
        printf("cuda_send_packet_to_host:\n");
        for(i = 0; i < len; i++)
            printf(" %02x", data[i]);
        printf("\n");
    }
#endif
    memcpy(s->data_in, data, len);
    s->data_in_size = len;
    s->data_in_index = 0;
    cuda_update(s);
    cuda_delay_set_sr_int(s);
}

static void cuda_adb_poll(void *opaque)
{
    CUDAState *s = opaque;
    uint8_t obuf[ADB_MAX_OUT_LEN + 2];
    int olen;

    olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
    if (olen > 0) {
        obuf[0] = ADB_PACKET;
        obuf[1] = 0x40; /* polled data */
        cuda_send_packet_to_host(s, obuf, olen + 2);
    }
    timer_mod(s->adb_poll_timer,
                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                   (get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
}

/* description of commands */
typedef struct CudaCommand {
    uint8_t command;
    const char *name;
    bool (*handler)(CUDAState *s,
                    const uint8_t *in_args, int in_len,
                    uint8_t *out_args, int *out_len);
} CudaCommand;

static bool cuda_cmd_autopoll(CUDAState *s,
                              const uint8_t *in_data, int in_len,
                              uint8_t *out_data, int *out_len)
{
    int autopoll;

    if (in_len != 1) {
        return false;
    }

    autopoll = (in_data[0] != 0);
    if (autopoll != s->autopoll) {
        s->autopoll = autopoll;
        if (autopoll) {
            timer_mod(s->adb_poll_timer,
                      qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                      (get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
        } else {
            timer_del(s->adb_poll_timer);
        }
    }
    return true;
}

static bool cuda_cmd_set_autorate(CUDAState *s,
                                  const uint8_t *in_data, int in_len,
                                  uint8_t *out_data, int *out_len)
{
    if (in_len != 1) {
        return false;
    }

    /* we don't want a period of 0 ms */
    /* FIXME: check what real hardware does */
    if (in_data[0] == 0) {
        return false;
    }

    s->autopoll_rate_ms = in_data[0];
    if (s->autopoll) {
        timer_mod(s->adb_poll_timer,
                  qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                  (get_ticks_per_sec() / (1000 / s->autopoll_rate_ms)));
    }
    return true;
}

static bool cuda_cmd_set_device_list(CUDAState *s,
                                     const uint8_t *in_data, int in_len,
                                     uint8_t *out_data, int *out_len)
{
    if (in_len != 2) {
        return false;
    }

    s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
    return true;
}

static bool cuda_cmd_powerdown(CUDAState *s,
                               const uint8_t *in_data, int in_len,
                               uint8_t *out_data, int *out_len)
{
    if (in_len != 0) {
        return false;
    }

    qemu_system_shutdown_request();
    return true;
}

static bool cuda_cmd_reset_system(CUDAState *s,
                                  const uint8_t *in_data, int in_len,
                                  uint8_t *out_data, int *out_len)
{
    if (in_len != 0) {
        return false;
    }

    qemu_system_reset_request();
    return true;
}

static bool cuda_cmd_set_file_server_flag(CUDAState *s,
                                          const uint8_t *in_data, int in_len,
                                          uint8_t *out_data, int *out_len)
{
    if (in_len != 1) {
        return false;
    }

    qemu_log_mask(LOG_UNIMP,
                  "CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
                  in_data[0]);
    return true;
}

static bool cuda_cmd_set_power_message(CUDAState *s,
                                       const uint8_t *in_data, int in_len,
                                       uint8_t *out_data, int *out_len)
{
    if (in_len != 1) {
        return false;
    }

    qemu_log_mask(LOG_UNIMP,
                  "CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
                  in_data[0]);
    return true;
}

static bool cuda_cmd_get_time(CUDAState *s,
                              const uint8_t *in_data, int in_len,
                              uint8_t *out_data, int *out_len)
{
    uint32_t ti;

    if (in_len != 0) {
        return false;
    }

    ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
                           / get_ticks_per_sec());
    out_data[0] = ti >> 24;
    out_data[1] = ti >> 16;
    out_data[2] = ti >> 8;
    out_data[3] = ti;
    *out_len = 4;
    return true;
}

static bool cuda_cmd_set_time(CUDAState *s,
                              const uint8_t *in_data, int in_len,
                              uint8_t *out_data, int *out_len)
{
    uint32_t ti;

    if (in_len != 4) {
        return false;
    }

    ti = (((uint32_t)in_data[1]) << 24) + (((uint32_t)in_data[2]) << 16)
         + (((uint32_t)in_data[3]) << 8) + in_data[4];
    s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
                           / get_ticks_per_sec());
    return true;
}

static const CudaCommand handlers[] = {
    { CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
    { CUDA_SET_AUTO_RATE, "SET_AUTO_RATE",  cuda_cmd_set_autorate },
    { CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
    { CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
    { CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
    { CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
      cuda_cmd_set_file_server_flag },
    { CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
      cuda_cmd_set_power_message },
    { CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
    { CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
};

static void cuda_receive_packet(CUDAState *s,
                                const uint8_t *data, int len)
{
    uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
    int i, out_len = 0;

    for (i = 0; i < ARRAY_SIZE(handlers); i++) {
        const CudaCommand *desc = &handlers[i];
        if (desc->command == data[0]) {
            CUDA_DPRINTF("handling command %s\n", desc->name);
            out_len = 0;
            if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
                cuda_send_packet_to_host(s, obuf, 3 + out_len);
            } else {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "CUDA: %s: wrong parameters %d\n",
                              desc->name, len);
                obuf[0] = ERROR_PACKET;
                obuf[1] = 0x5; /* bad parameters */
                obuf[2] = CUDA_PACKET;
                obuf[3] = data[0];
                cuda_send_packet_to_host(s, obuf, 4);
            }
            return;
        }
    }

    switch(data[0]) {
    case CUDA_COMBINED_FORMAT_IIC:
        obuf[0] = ERROR_PACKET;
        obuf[1] = 0x5;
        obuf[2] = CUDA_PACKET;
        obuf[3] = data[0];
        cuda_send_packet_to_host(s, obuf, 4);
        return;
    case CUDA_GET_SET_IIC:
        if (len == 4) {
            cuda_send_packet_to_host(s, obuf, 3);
        } else {
            obuf[0] = ERROR_PACKET;
            obuf[1] = 0x2;
            obuf[2] = CUDA_PACKET;
            obuf[3] = data[0];
            cuda_send_packet_to_host(s, obuf, 4);
        }
        return;
    default:
        break;
    }

    qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
    obuf[0] = ERROR_PACKET;
    obuf[1] = 0x2; /* unknown command */
    obuf[2] = CUDA_PACKET;
    obuf[3] = data[0];
    cuda_send_packet_to_host(s, obuf, 4);
}

static void cuda_receive_packet_from_host(CUDAState *s,
                                          const uint8_t *data, int len)
{
#ifdef DEBUG_CUDA_PACKET
    {
        int i;
        printf("cuda_receive_packet_from_host:\n");
        for(i = 0; i < len; i++)
            printf(" %02x", data[i]);
        printf("\n");
    }
#endif
    switch(data[0]) {
    case ADB_PACKET:
        {
            uint8_t obuf[ADB_MAX_OUT_LEN + 3];
            int olen;
            olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
            if (olen > 0) {
                obuf[0] = ADB_PACKET;
                obuf[1] = 0x00;
                cuda_send_packet_to_host(s, obuf, olen + 2);
            } else {
                /* error */
                obuf[0] = ADB_PACKET;
                obuf[1] = -olen;
                obuf[2] = data[1];
                olen = 0;
                cuda_send_packet_to_host(s, obuf, olen + 3);
            }
        }
        break;
    case CUDA_PACKET:
        cuda_receive_packet(s, data + 1, len - 1);
        break;
    }
}

static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
{
}

static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
{
}

static uint32_t cuda_readw (void *opaque, hwaddr addr)
{
    return 0;
}

static uint32_t cuda_readl (void *opaque, hwaddr addr)
{
    return 0;
}

static const MemoryRegionOps cuda_ops = {
    .old_mmio = {
        .write = {
            cuda_writeb,
            cuda_writew,
            cuda_writel,
        },
        .read = {
            cuda_readb,
            cuda_readw,
            cuda_readl,
        },
    },
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static bool cuda_timer_exist(void *opaque, int version_id)
{
    CUDATimer *s = opaque;

    return s->timer != NULL;
}

static const VMStateDescription vmstate_cuda_timer = {
    .name = "cuda_timer",
    .version_id = 0,
    .minimum_version_id = 0,
    .fields = (VMStateField[]) {
        VMSTATE_UINT16(latch, CUDATimer),
        VMSTATE_UINT16(counter_value, CUDATimer),
        VMSTATE_INT64(load_time, CUDATimer),
        VMSTATE_INT64(next_irq_time, CUDATimer),
        VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_cuda = {
    .name = "cuda",
    .version_id = 4,
    .minimum_version_id = 4,
    .fields = (VMStateField[]) {
        VMSTATE_UINT8(a, CUDAState),
        VMSTATE_UINT8(b, CUDAState),
        VMSTATE_UINT8(last_b, CUDAState),
        VMSTATE_UINT8(dira, CUDAState),
        VMSTATE_UINT8(dirb, CUDAState),
        VMSTATE_UINT8(sr, CUDAState),
        VMSTATE_UINT8(acr, CUDAState),
        VMSTATE_UINT8(last_acr, CUDAState),
        VMSTATE_UINT8(pcr, CUDAState),
        VMSTATE_UINT8(ifr, CUDAState),
        VMSTATE_UINT8(ier, CUDAState),
        VMSTATE_UINT8(anh, CUDAState),
        VMSTATE_INT32(data_in_size, CUDAState),
        VMSTATE_INT32(data_in_index, CUDAState),
        VMSTATE_INT32(data_out_index, CUDAState),
        VMSTATE_UINT8(autopoll, CUDAState),
        VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
        VMSTATE_UINT16(adb_poll_mask, CUDAState),
        VMSTATE_BUFFER(data_in, CUDAState),
        VMSTATE_BUFFER(data_out, CUDAState),
        VMSTATE_UINT32(tick_offset, CUDAState),
        VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
                             vmstate_cuda_timer, CUDATimer),
        VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
        VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
        VMSTATE_END_OF_LIST()
    }
};

static void cuda_reset(DeviceState *dev)
{
    CUDAState *s = CUDA(dev);

    s->b = 0;
    s->a = 0;
    s->dirb = 0xff;
    s->dira = 0;
    s->sr = 0;
    s->acr = 0;
    s->pcr = 0;
    s->ifr = 0;
    s->ier = 0;
    //    s->ier = T1_INT | SR_INT;
    s->anh = 0;
    s->data_in_size = 0;
    s->data_in_index = 0;
    s->data_out_index = 0;
    s->autopoll = 0;

    s->timers[0].latch = 0xffff;
    set_counter(s, &s->timers[0], 0xffff);

    s->timers[1].latch = 0xffff;

    s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
}

static void cuda_realizefn(DeviceState *dev, Error **errp)
{
    CUDAState *s = CUDA(dev);
    struct tm tm;

    s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
    s->timers[0].frequency = s->frequency;
    s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
    s->timers[1].frequency = (SCALE_US * 6000) / 4700;

    qemu_get_timedate(&tm, 0);
    s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;

    s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
    s->autopoll_rate_ms = 20;
    s->adb_poll_mask = 0xffff;
}

static void cuda_initfn(Object *obj)
{
    SysBusDevice *d = SYS_BUS_DEVICE(obj);
    CUDAState *s = CUDA(obj);
    int i;

    memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
    sysbus_init_mmio(d, &s->mem);
    sysbus_init_irq(d, &s->irq);

    for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
        s->timers[i].index = i;
    }

    qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
                        DEVICE(obj), "adb.0");
}

static Property cuda_properties[] = {
    DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
    DEFINE_PROP_END_OF_LIST()
};

static void cuda_class_init(ObjectClass *oc, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(oc);

    dc->realize = cuda_realizefn;
    dc->reset = cuda_reset;
    dc->vmsd = &vmstate_cuda;
    dc->props = cuda_properties;
    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
}

static const TypeInfo cuda_type_info = {
    .name = TYPE_CUDA,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(CUDAState),
    .instance_init = cuda_initfn,
    .class_init = cuda_class_init,
};

static void cuda_register_types(void)
{
    type_register_static(&cuda_type_info);
}

type_init(cuda_register_types)