1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/*
* IMX31 Clock Control Module
*
* Copyright (C) 2012 NICTA
* Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* To get the timer frequencies right, we need to emulate at least part of
* the CCM.
*/
#include "hw/misc/imx_ccm.h"
#define CKIH_FREQ 26000000 /* 26MHz crystal input */
#define CKIL_FREQ 32768 /* nominal 32khz clock */
#ifndef DEBUG_IMX_CCM
#define DEBUG_IMX_CCM 0
#endif
#define DPRINTF(fmt, args...) \
do { \
if (DEBUG_IMX_CCM) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_CCM, \
__func__, ##args); \
} \
} while (0)
static int imx_ccm_post_load(void *opaque, int version_id);
static const VMStateDescription vmstate_imx_ccm = {
.name = TYPE_IMX_CCM,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ccmr, IMXCCMState),
VMSTATE_UINT32(pdr0, IMXCCMState),
VMSTATE_UINT32(pdr1, IMXCCMState),
VMSTATE_UINT32(mpctl, IMXCCMState),
VMSTATE_UINT32(spctl, IMXCCMState),
VMSTATE_UINT32_ARRAY(cgr, IMXCCMState, 3),
VMSTATE_UINT32(pmcr0, IMXCCMState),
VMSTATE_UINT32(pmcr1, IMXCCMState),
VMSTATE_UINT32(pll_refclk_freq, IMXCCMState),
VMSTATE_END_OF_LIST()
},
.post_load = imx_ccm_post_load,
};
uint32_t imx_ccm_get_clock_frequency(DeviceState *dev, IMXClk clock)
{
IMXCCMState *s = IMX_CCM(dev);
switch (clock) {
case NOCLK:
return 0;
case CLK_MCU:
return s->mcu_clk_freq;
case CLK_HSP:
return s->hsp_clk_freq;
case CLK_IPG:
return s->ipg_clk_freq;
case CLK_32k:
return CKIL_FREQ;
}
return 0;
}
/*
* Calculate PLL output frequency
*/
static uint32_t calc_pll(uint32_t pllreg, uint32_t base_freq)
{
int32_t mfn = MFN(pllreg); /* Numerator */
uint32_t mfi = MFI(pllreg); /* Integer part */
uint32_t mfd = 1 + MFD(pllreg); /* Denominator */
uint32_t pd = 1 + PD(pllreg); /* Pre-divider */
if (mfi < 5) {
mfi = 5;
}
/* mfn is 10-bit signed twos-complement */
mfn <<= 32 - 10;
mfn >>= 32 - 10;
return ((2 * (base_freq >> 10) * (mfi * mfd + mfn)) /
(mfd * pd)) << 10;
}
static void update_clocks(IMXCCMState *s)
{
/*
* If we ever emulate more clocks, this should switch to a data-driven
* approach
*/
if ((s->ccmr & CCMR_PRCS) == 2) {
s->pll_refclk_freq = CKIL_FREQ * 1024;
} else {
s->pll_refclk_freq = CKIH_FREQ;
}
/* ipg_clk_arm aka MCU clock */
if ((s->ccmr & CCMR_MDS) || !(s->ccmr & CCMR_MPE)) {
s->mcu_clk_freq = s->pll_refclk_freq;
} else {
s->mcu_clk_freq = calc_pll(s->mpctl, s->pll_refclk_freq);
}
/* High-speed clock */
s->hsp_clk_freq = s->mcu_clk_freq / (1 + EXTRACT(s->pdr0, HSP));
s->ipg_clk_freq = s->hsp_clk_freq / (1 + EXTRACT(s->pdr0, IPG));
DPRINTF("mcu %uMHz, HSP %uMHz, IPG %uHz\n",
s->mcu_clk_freq / 1000000,
s->hsp_clk_freq / 1000000,
s->ipg_clk_freq);
}
static void imx_ccm_reset(DeviceState *dev)
{
IMXCCMState *s = IMX_CCM(dev);
s->ccmr = 0x074b0b7d;
s->pdr0 = 0xff870b48;
s->pdr1 = 0x49fcfe7f;
s->mpctl = PLL_PD(1) | PLL_MFD(0) | PLL_MFI(6) | PLL_MFN(0);
s->cgr[0] = s->cgr[1] = s->cgr[2] = 0xffffffff;
s->spctl = PLL_PD(1) | PLL_MFD(4) | PLL_MFI(0xc) | PLL_MFN(1);
s->pmcr0 = 0x80209828;
update_clocks(s);
}
static uint64_t imx_ccm_read(void *opaque, hwaddr offset,
unsigned size)
{
IMXCCMState *s = (IMXCCMState *)opaque;
DPRINTF("(offset=0x%" HWADDR_PRIx ")\n", offset);
switch (offset >> 2) {
case 0: /* CCMR */
DPRINTF(" ccmr = 0x%x\n", s->ccmr);
return s->ccmr;
case 1:
DPRINTF(" pdr0 = 0x%x\n", s->pdr0);
return s->pdr0;
case 2:
DPRINTF(" pdr1 = 0x%x\n", s->pdr1);
return s->pdr1;
case 4:
DPRINTF(" mpctl = 0x%x\n", s->mpctl);
return s->mpctl;
case 6:
DPRINTF(" spctl = 0x%x\n", s->spctl);
return s->spctl;
case 8:
DPRINTF(" cgr0 = 0x%x\n", s->cgr[0]);
return s->cgr[0];
case 9:
DPRINTF(" cgr1 = 0x%x\n", s->cgr[1]);
return s->cgr[1];
case 10:
DPRINTF(" cgr2 = 0x%x\n", s->cgr[2]);
return s->cgr[2];
case 18: /* LTR1 */
return 0x00004040;
case 23:
DPRINTF(" pcmr0 = 0x%x\n", s->pmcr0);
return s->pmcr0;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX_CCM, __func__, offset);
return 0;
}
}
static void imx_ccm_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
IMXCCMState *s = (IMXCCMState *)opaque;
DPRINTF("(offset=0x%" HWADDR_PRIx ", value = 0x%x)\n",
offset, (unsigned int)value);
switch (offset >> 2) {
case 0:
s->ccmr = CCMR_FPMF | (value & 0x3b6fdfff);
break;
case 1:
s->pdr0 = value & 0xff9f3fff;
break;
case 2:
s->pdr1 = value;
break;
case 4:
s->mpctl = value & 0xbfff3fff;
break;
case 6:
s->spctl = value & 0xbfff3fff;
break;
case 8:
s->cgr[0] = value;
return;
case 9:
s->cgr[1] = value;
return;
case 10:
s->cgr[2] = value;
return;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX_CCM, __func__, offset);
return;
}
update_clocks(s);
}
static const struct MemoryRegionOps imx_ccm_ops = {
.read = imx_ccm_read,
.write = imx_ccm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int imx_ccm_init(SysBusDevice *dev)
{
IMXCCMState *s = IMX_CCM(dev);
memory_region_init_io(&s->iomem, OBJECT(dev), &imx_ccm_ops, s,
TYPE_IMX_CCM, 0x1000);
sysbus_init_mmio(dev, &s->iomem);
return 0;
}
static int imx_ccm_post_load(void *opaque, int version_id)
{
IMXCCMState *s = (IMXCCMState *)opaque;
update_clocks(s);
return 0;
}
static void imx_ccm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
sbc->init = imx_ccm_init;
dc->reset = imx_ccm_reset;
dc->vmsd = &vmstate_imx_ccm;
dc->desc = "i.MX Clock Control Module";
}
static const TypeInfo imx_ccm_info = {
.name = TYPE_IMX_CCM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXCCMState),
.class_init = imx_ccm_class_init,
};
static void imx_ccm_register_types(void)
{
type_register_static(&imx_ccm_info);
}
type_init(imx_ccm_register_types)
|