1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/*
* IMX6 System Reset Controller
*
* Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "hw/misc/imx6_src.h"
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "arm-powerctl.h"
#include "qom/cpu.h"
#ifndef DEBUG_IMX6_SRC
#define DEBUG_IMX6_SRC 0
#endif
#define DPRINTF(fmt, args...) \
do { \
if (DEBUG_IMX6_SRC) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
__func__, ##args); \
} \
} while (0)
static const char *imx6_src_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case SRC_SCR:
return "SRC_SCR";
case SRC_SBMR1:
return "SRC_SBMR1";
case SRC_SRSR:
return "SRC_SRSR";
case SRC_SISR:
return "SRC_SISR";
case SRC_SIMR:
return "SRC_SIMR";
case SRC_SBMR2:
return "SRC_SBMR2";
case SRC_GPR1:
return "SRC_GPR1";
case SRC_GPR2:
return "SRC_GPR2";
case SRC_GPR3:
return "SRC_GPR3";
case SRC_GPR4:
return "SRC_GPR4";
case SRC_GPR5:
return "SRC_GPR5";
case SRC_GPR6:
return "SRC_GPR6";
case SRC_GPR7:
return "SRC_GPR7";
case SRC_GPR8:
return "SRC_GPR8";
case SRC_GPR9:
return "SRC_GPR9";
case SRC_GPR10:
return "SRC_GPR10";
default:
sprintf(unknown, "%d ?", reg);
return unknown;
}
}
static const VMStateDescription vmstate_imx6_src = {
.name = TYPE_IMX6_SRC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
VMSTATE_END_OF_LIST()
},
};
static void imx6_src_reset(DeviceState *dev)
{
IMX6SRCState *s = IMX6_SRC(dev);
DPRINTF("\n");
memset(s->regs, 0, sizeof(s->regs));
/* Set reset values */
s->regs[SRC_SCR] = 0x521;
s->regs[SRC_SRSR] = 0x1;
s->regs[SRC_SIMR] = 0x1F;
}
static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value = 0;
IMX6SRCState *s = (IMX6SRCState *)opaque;
uint32_t index = offset >> 2;
if (index < SRC_MAX) {
value = s->regs[index];
} else {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
}
DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
return value;
}
/* The reset is asynchronous so we need to defer clearing the reset
* bit until the work is completed.
*/
struct SRCSCRResetInfo {
IMX6SRCState *s;
int reset_bit;
};
static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
{
struct SRCSCRResetInfo *ri = data.host_ptr;
IMX6SRCState *s = ri->s;
assert(qemu_mutex_iothread_locked());
s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
g_free(ri);
}
static void imx6_defer_clear_reset_bit(int cpuid,
IMX6SRCState *s,
unsigned long reset_shift)
{
struct SRCSCRResetInfo *ri;
ri = g_malloc(sizeof(struct SRCSCRResetInfo));
ri->s = s;
ri->reset_bit = reset_shift;
async_run_on_cpu(arm_get_cpu_by_id(cpuid), imx6_clear_reset_bit,
RUN_ON_CPU_HOST_PTR(ri));
}
static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
IMX6SRCState *s = (IMX6SRCState *)opaque;
uint32_t index = offset >> 2;
unsigned long change_mask;
unsigned long current_value = value;
if (index >= SRC_MAX) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
return;
}
DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
(uint32_t)current_value);
change_mask = s->regs[index] ^ (uint32_t)current_value;
switch (index) {
case SRC_SCR:
/*
* On real hardware when the system reset controller starts a
* secondary CPU it runs through some boot ROM code which reads
* the SRC_GPRX registers controlling the start address and branches
* to it.
* Here we are taking a short cut and branching directly to the
* requested address (we don't want to run the boot ROM code inside
* QEMU)
*/
if (EXTRACT(change_mask, CORE3_ENABLE)) {
if (EXTRACT(current_value, CORE3_ENABLE)) {
/* CORE 3 is brought up */
arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
3, false);
} else {
/* CORE 3 is shut down */
arm_set_cpu_off(3);
}
/* We clear the reset bits as the processor changed state */
imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
clear_bit(CORE3_RST_SHIFT, &change_mask);
}
if (EXTRACT(change_mask, CORE2_ENABLE)) {
if (EXTRACT(current_value, CORE2_ENABLE)) {
/* CORE 2 is brought up */
arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
3, false);
} else {
/* CORE 2 is shut down */
arm_set_cpu_off(2);
}
/* We clear the reset bits as the processor changed state */
imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
clear_bit(CORE2_RST_SHIFT, &change_mask);
}
if (EXTRACT(change_mask, CORE1_ENABLE)) {
if (EXTRACT(current_value, CORE1_ENABLE)) {
/* CORE 1 is brought up */
arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
3, false);
} else {
/* CORE 1 is shut down */
arm_set_cpu_off(1);
}
/* We clear the reset bits as the processor changed state */
imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
clear_bit(CORE1_RST_SHIFT, &change_mask);
}
if (EXTRACT(change_mask, CORE0_RST)) {
arm_reset_cpu(0);
imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
}
if (EXTRACT(change_mask, CORE1_RST)) {
arm_reset_cpu(1);
imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
}
if (EXTRACT(change_mask, CORE2_RST)) {
arm_reset_cpu(2);
imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
}
if (EXTRACT(change_mask, CORE3_RST)) {
arm_reset_cpu(3);
imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
}
if (EXTRACT(change_mask, SW_IPU2_RST)) {
/* We pretend the IPU2 is reset */
clear_bit(SW_IPU2_RST_SHIFT, ¤t_value);
}
if (EXTRACT(change_mask, SW_IPU1_RST)) {
/* We pretend the IPU1 is reset */
clear_bit(SW_IPU1_RST_SHIFT, ¤t_value);
}
s->regs[index] = current_value;
break;
default:
s->regs[index] = current_value;
break;
}
}
static const struct MemoryRegionOps imx6_src_ops = {
.read = imx6_src_read,
.write = imx6_src_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void imx6_src_realize(DeviceState *dev, Error **errp)
{
IMX6SRCState *s = IMX6_SRC(dev);
memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
TYPE_IMX6_SRC, 0x1000);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
}
static void imx6_src_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = imx6_src_realize;
dc->reset = imx6_src_reset;
dc->vmsd = &vmstate_imx6_src;
dc->desc = "i.MX6 System Reset Controller";
}
static const TypeInfo imx6_src_info = {
.name = TYPE_IMX6_SRC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMX6SRCState),
.class_init = imx6_src_class_init,
};
static void imx6_src_register_types(void)
{
type_register_static(&imx6_src_info);
}
type_init(imx6_src_register_types)
|