aboutsummaryrefslogtreecommitdiff
path: root/hw/mips/mips_malta.c
blob: 482250d85d759f00acbd2a64d6c60d6f1ca189de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
/*
 * QEMU Malta board support
 *
 * Copyright (c) 2006 Aurelien Jarno
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/block/fdc.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/i2c/smbus.h"
#include "sysemu/block-backend.h"
#include "hw/block/flash.h"
#include "hw/mips/mips.h"
#include "hw/mips/cpudevs.h"
#include "hw/pci/pci.h"
#include "sysemu/char.h"
#include "sysemu/sysemu.h"
#include "sysemu/arch_init.h"
#include "qemu/log.h"
#include "hw/mips/bios.h"
#include "hw/ide.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/timer/i8254.h"
#include "sysemu/block-backend.h"
#include "sysemu/blockdev.h"
#include "exec/address-spaces.h"
#include "hw/sysbus.h"             /* SysBusDevice */
#include "qemu/host-utils.h"
#include "sysemu/qtest.h"
#include "qemu/error-report.h"
#include "hw/empty_slot.h"
#include "sysemu/kvm.h"

//#define DEBUG_BOARD_INIT

#define ENVP_ADDR		0x80002000l
#define ENVP_NB_ENTRIES	 	16
#define ENVP_ENTRY_SIZE	 	256

/* Hardware addresses */
#define FLASH_ADDRESS 0x1e000000ULL
#define FPGA_ADDRESS  0x1f000000ULL
#define RESET_ADDRESS 0x1fc00000ULL

#define FLASH_SIZE    0x400000

#define MAX_IDE_BUS 2

typedef struct {
    MemoryRegion iomem;
    MemoryRegion iomem_lo; /* 0 - 0x900 */
    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
    uint32_t leds;
    uint32_t brk;
    uint32_t gpout;
    uint32_t i2cin;
    uint32_t i2coe;
    uint32_t i2cout;
    uint32_t i2csel;
    CharDriverState *display;
    char display_text[9];
    SerialState *uart;
} MaltaFPGAState;

#define TYPE_MIPS_MALTA "mips-malta"
#define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)

typedef struct {
    SysBusDevice parent_obj;

    qemu_irq *i8259;
} MaltaState;

static ISADevice *pit;

static struct _loaderparams {
    int ram_size;
    const char *kernel_filename;
    const char *kernel_cmdline;
    const char *initrd_filename;
} loaderparams;

/* Malta FPGA */
static void malta_fpga_update_display(void *opaque)
{
    char leds_text[9];
    int i;
    MaltaFPGAState *s = opaque;

    for (i = 7 ; i >= 0 ; i--) {
        if (s->leds & (1 << i))
            leds_text[i] = '#';
        else
            leds_text[i] = ' ';
    }
    leds_text[8] = '\0';

    qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
    qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
}

/*
 * EEPROM 24C01 / 24C02 emulation.
 *
 * Emulation for serial EEPROMs:
 * 24C01 - 1024 bit (128 x 8)
 * 24C02 - 2048 bit (256 x 8)
 *
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
 */

//~ #define DEBUG

#if defined(DEBUG)
#  define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
#else
#  define logout(fmt, ...) ((void)0)
#endif

struct _eeprom24c0x_t {
  uint8_t tick;
  uint8_t address;
  uint8_t command;
  uint8_t ack;
  uint8_t scl;
  uint8_t sda;
  uint8_t data;
  //~ uint16_t size;
  uint8_t contents[256];
};

typedef struct _eeprom24c0x_t eeprom24c0x_t;

static eeprom24c0x_t spd_eeprom = {
    .contents = {
        /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
    },
};

static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
{
    enum { SDR = 0x4, DDR2 = 0x8 } type;
    uint8_t *spd = spd_eeprom.contents;
    uint8_t nbanks = 0;
    uint16_t density = 0;
    int i;

    /* work in terms of MB */
    ram_size >>= 20;

    while ((ram_size >= 4) && (nbanks <= 2)) {
        int sz_log2 = MIN(31 - clz32(ram_size), 14);
        nbanks++;
        density |= 1 << (sz_log2 - 2);
        ram_size -= 1 << sz_log2;
    }

    /* split to 2 banks if possible */
    if ((nbanks == 1) && (density > 1)) {
        nbanks++;
        density >>= 1;
    }

    if (density & 0xff00) {
        density = (density & 0xe0) | ((density >> 8) & 0x1f);
        type = DDR2;
    } else if (!(density & 0x1f)) {
        type = DDR2;
    } else {
        type = SDR;
    }

    if (ram_size) {
        fprintf(stderr, "Warning: SPD cannot represent final %dMB"
                " of SDRAM\n", (int)ram_size);
    }

    /* fill in SPD memory information */
    spd[2] = type;
    spd[5] = nbanks;
    spd[31] = density;

    /* checksum */
    spd[63] = 0;
    for (i = 0; i < 63; i++) {
        spd[63] += spd[i];
    }

    /* copy for SMBUS */
    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
}

static void generate_eeprom_serial(uint8_t *eeprom)
{
    int i, pos = 0;
    uint8_t mac[6] = { 0x00 };
    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };

    /* version */
    eeprom[pos++] = 0x01;

    /* count */
    eeprom[pos++] = 0x02;

    /* MAC address */
    eeprom[pos++] = 0x01; /* MAC */
    eeprom[pos++] = 0x06; /* length */
    memcpy(&eeprom[pos], mac, sizeof(mac));
    pos += sizeof(mac);

    /* serial number */
    eeprom[pos++] = 0x02; /* serial */
    eeprom[pos++] = 0x05; /* length */
    memcpy(&eeprom[pos], sn, sizeof(sn));
    pos += sizeof(sn);

    /* checksum */
    eeprom[pos] = 0;
    for (i = 0; i < pos; i++) {
        eeprom[pos] += eeprom[i];
    }
}

static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
{
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
    return eeprom->sda;
}

static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
{
    if (eeprom->scl && scl && (eeprom->sda != sda)) {
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
                sda ? "stop" : "start");
        if (!sda) {
            eeprom->tick = 1;
            eeprom->command = 0;
        }
    } else if (eeprom->tick == 0 && !eeprom->ack) {
        /* Waiting for start. */
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
    } else if (!eeprom->scl && scl) {
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
        if (eeprom->ack) {
            logout("\ti2c ack bit = 0\n");
            sda = 0;
            eeprom->ack = 0;
        } else if (eeprom->sda == sda) {
            uint8_t bit = (sda != 0);
            logout("\ti2c bit = %d\n", bit);
            if (eeprom->tick < 9) {
                eeprom->command <<= 1;
                eeprom->command += bit;
                eeprom->tick++;
                if (eeprom->tick == 9) {
                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
                           bit ? "read" : "write");
                    eeprom->ack = 1;
                }
            } else if (eeprom->tick < 17) {
                if (eeprom->command & 1) {
                    sda = ((eeprom->data & 0x80) != 0);
                }
                eeprom->address <<= 1;
                eeprom->address += bit;
                eeprom->tick++;
                eeprom->data <<= 1;
                if (eeprom->tick == 17) {
                    eeprom->data = eeprom->contents[eeprom->address];
                    logout("\taddress 0x%04x, data 0x%02x\n",
                           eeprom->address, eeprom->data);
                    eeprom->ack = 1;
                    eeprom->tick = 0;
                }
            } else if (eeprom->tick >= 17) {
                sda = 0;
            }
        } else {
            logout("\tsda changed with raising scl\n");
        }
    } else {
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
               scl, eeprom->sda, sda);
    }
    eeprom->scl = scl;
    eeprom->sda = sda;
}

static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
                                unsigned size)
{
    MaltaFPGAState *s = opaque;
    uint32_t val = 0;
    uint32_t saddr;

    saddr = (addr & 0xfffff);

    switch (saddr) {

    /* SWITCH Register */
    case 0x00200:
        val = 0x00000000;		/* All switches closed */
        break;

    /* STATUS Register */
    case 0x00208:
#ifdef TARGET_WORDS_BIGENDIAN
        val = 0x00000012;
#else
        val = 0x00000010;
#endif
        break;

    /* JMPRS Register */
    case 0x00210:
        val = 0x00;
        break;

    /* LEDBAR Register */
    case 0x00408:
        val = s->leds;
        break;

    /* BRKRES Register */
    case 0x00508:
        val = s->brk;
        break;

    /* UART Registers are handled directly by the serial device */

    /* GPOUT Register */
    case 0x00a00:
        val = s->gpout;
        break;

    /* XXX: implement a real I2C controller */

    /* GPINP Register */
    case 0x00a08:
        /* IN = OUT until a real I2C control is implemented */
        if (s->i2csel)
            val = s->i2cout;
        else
            val = 0x00;
        break;

    /* I2CINP Register */
    case 0x00b00:
        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
        break;

    /* I2COE Register */
    case 0x00b08:
        val = s->i2coe;
        break;

    /* I2COUT Register */
    case 0x00b10:
        val = s->i2cout;
        break;

    /* I2CSEL Register */
    case 0x00b18:
        val = s->i2csel;
        break;

    default:
#if 0
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
                addr);
#endif
        break;
    }
    return val;
}

static void malta_fpga_write(void *opaque, hwaddr addr,
                             uint64_t val, unsigned size)
{
    MaltaFPGAState *s = opaque;
    uint32_t saddr;

    saddr = (addr & 0xfffff);

    switch (saddr) {

    /* SWITCH Register */
    case 0x00200:
        break;

    /* JMPRS Register */
    case 0x00210:
        break;

    /* LEDBAR Register */
    case 0x00408:
        s->leds = val & 0xff;
        malta_fpga_update_display(s);
        break;

    /* ASCIIWORD Register */
    case 0x00410:
        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
        malta_fpga_update_display(s);
        break;

    /* ASCIIPOS0 to ASCIIPOS7 Registers */
    case 0x00418:
    case 0x00420:
    case 0x00428:
    case 0x00430:
    case 0x00438:
    case 0x00440:
    case 0x00448:
    case 0x00450:
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
        malta_fpga_update_display(s);
        break;

    /* SOFTRES Register */
    case 0x00500:
        if (val == 0x42)
            qemu_system_reset_request ();
        break;

    /* BRKRES Register */
    case 0x00508:
        s->brk = val & 0xff;
        break;

    /* UART Registers are handled directly by the serial device */

    /* GPOUT Register */
    case 0x00a00:
        s->gpout = val & 0xff;
        break;

    /* I2COE Register */
    case 0x00b08:
        s->i2coe = val & 0x03;
        break;

    /* I2COUT Register */
    case 0x00b10:
        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
        s->i2cout = val;
        break;

    /* I2CSEL Register */
    case 0x00b18:
        s->i2csel = val & 0x01;
        break;

    default:
#if 0
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
                addr);
#endif
        break;
    }
}

static const MemoryRegionOps malta_fpga_ops = {
    .read = malta_fpga_read,
    .write = malta_fpga_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static void malta_fpga_reset(void *opaque)
{
    MaltaFPGAState *s = opaque;

    s->leds   = 0x00;
    s->brk    = 0x0a;
    s->gpout  = 0x00;
    s->i2cin  = 0x3;
    s->i2coe  = 0x0;
    s->i2cout = 0x3;
    s->i2csel = 0x1;

    s->display_text[8] = '\0';
    snprintf(s->display_text, 9, "        ");
}

static void malta_fpga_led_init(CharDriverState *chr)
{
    qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
    qemu_chr_fe_printf(chr, "+--------+\r\n");
    qemu_chr_fe_printf(chr, "+        +\r\n");
    qemu_chr_fe_printf(chr, "+--------+\r\n");
    qemu_chr_fe_printf(chr, "\n");
    qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
    qemu_chr_fe_printf(chr, "+--------+\r\n");
    qemu_chr_fe_printf(chr, "+        +\r\n");
    qemu_chr_fe_printf(chr, "+--------+\r\n");
}

static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
         hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
{
    MaltaFPGAState *s;

    s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));

    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
                          "malta-fpga", 0x100000);
    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
                             &s->iomem, 0, 0x900);
    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
                             &s->iomem, 0xa00, 0x10000-0xa00);

    memory_region_add_subregion(address_space, base, &s->iomem_lo);
    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);

    s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);

    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);

    malta_fpga_reset(s);
    qemu_register_reset(malta_fpga_reset, s);

    return s;
}

/* Network support */
static void network_init(PCIBus *pci_bus)
{
    int i;

    for(i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];
        const char *default_devaddr = NULL;

        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
            /* The malta board has a PCNet card using PCI SLOT 11 */
            default_devaddr = "0b";

        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
    }
}

/* ROM and pseudo bootloader

   The following code implements a very very simple bootloader. It first
   loads the registers a0 to a3 to the values expected by the OS, and
   then jump at the kernel address.

   The bootloader should pass the locations of the kernel arguments and
   environment variables tables. Those tables contain the 32-bit address
   of NULL terminated strings. The environment variables table should be
   terminated by a NULL address.

   For a simpler implementation, the number of kernel arguments is fixed
   to two (the name of the kernel and the command line), and the two
   tables are actually the same one.

   The registers a0 to a3 should contain the following values:
     a0 - number of kernel arguments
     a1 - 32-bit address of the kernel arguments table
     a2 - 32-bit address of the environment variables table
     a3 - RAM size in bytes
*/

static void write_bootloader (CPUMIPSState *env, uint8_t *base,
                              int64_t run_addr, int64_t kernel_entry)
{
    uint32_t *p;

    /* Small bootloader */
    p = (uint32_t *)base;

    stl_p(p++, 0x08000000 |                                      /* j 0x1fc00580 */
                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
    stl_p(p++, 0x00000000);                                      /* nop */

    /* YAMON service vector */
    stl_p(base + 0x500, run_addr + 0x0580);      /* start: */
    stl_p(base + 0x504, run_addr + 0x083c);      /* print_count: */
    stl_p(base + 0x520, run_addr + 0x0580);      /* start: */
    stl_p(base + 0x52c, run_addr + 0x0800);      /* flush_cache: */
    stl_p(base + 0x534, run_addr + 0x0808);      /* print: */
    stl_p(base + 0x538, run_addr + 0x0800);      /* reg_cpu_isr: */
    stl_p(base + 0x53c, run_addr + 0x0800);      /* unred_cpu_isr: */
    stl_p(base + 0x540, run_addr + 0x0800);      /* reg_ic_isr: */
    stl_p(base + 0x544, run_addr + 0x0800);      /* unred_ic_isr: */
    stl_p(base + 0x548, run_addr + 0x0800);      /* reg_esr: */
    stl_p(base + 0x54c, run_addr + 0x0800);      /* unreg_esr: */
    stl_p(base + 0x550, run_addr + 0x0800);      /* getchar: */
    stl_p(base + 0x554, run_addr + 0x0800);      /* syscon_read: */


    /* Second part of the bootloader */
    p = (uint32_t *) (base + 0x580);
    stl_p(p++, 0x24040002);                                      /* addiu a0, zero, 2 */
    stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
    stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));        /* ori sp, sp, low(ENVP_ADDR) */
    stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
    stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a1, low(ENVP_ADDR) */
    stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
    stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
    stl_p(p++, 0x3c070000 | (loaderparams.ram_size >> 16));     /* lui a3, high(ram_size) */
    stl_p(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff));  /* ori a3, a3, low(ram_size) */

    /* Load BAR registers as done by YAMON */
    stl_p(p++, 0x3c09b400);                                      /* lui t1, 0xb400 */

#ifdef TARGET_WORDS_BIGENDIAN
    stl_p(p++, 0x3c08df00);                                      /* lui t0, 0xdf00 */
#else
    stl_p(p++, 0x340800df);                                      /* ori t0, r0, 0x00df */
#endif
    stl_p(p++, 0xad280068);                                      /* sw t0, 0x0068(t1) */

    stl_p(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */

#ifdef TARGET_WORDS_BIGENDIAN
    stl_p(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
#else
    stl_p(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
#endif
    stl_p(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
    stl_p(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
#else
    stl_p(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
#endif
    stl_p(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */

#ifdef TARGET_WORDS_BIGENDIAN
    stl_p(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
#else
    stl_p(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
#endif
    stl_p(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
    stl_p(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
#else
    stl_p(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
#endif
    stl_p(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */

#ifdef TARGET_WORDS_BIGENDIAN
    stl_p(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
#else
    stl_p(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
#endif
    stl_p(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
    stl_p(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
#else
    stl_p(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
#endif
    stl_p(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */

    /* Jump to kernel code */
    stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
    stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
    stl_p(p++, 0x03e00009);                                      /* jalr ra */
    stl_p(p++, 0x00000000);                                      /* nop */

    /* YAMON subroutines */
    p = (uint32_t *) (base + 0x800);
    stl_p(p++, 0x03e00009);                                     /* jalr ra */
    stl_p(p++, 0x24020000);                                     /* li v0,0 */
    /* 808 YAMON print */
    stl_p(p++, 0x03e06821);                                     /* move t5,ra */
    stl_p(p++, 0x00805821);                                     /* move t3,a0 */
    stl_p(p++, 0x00a05021);                                     /* move t2,a1 */
    stl_p(p++, 0x91440000);                                     /* lbu a0,0(t2) */
    stl_p(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
    stl_p(p++, 0x10800005);                                     /* beqz a0,834 */
    stl_p(p++, 0x00000000);                                     /* nop */
    stl_p(p++, 0x0ff0021c);                                     /* jal 870 */
    stl_p(p++, 0x00000000);                                     /* nop */
    stl_p(p++, 0x08000205);                                     /* j 814 */
    stl_p(p++, 0x00000000);                                     /* nop */
    stl_p(p++, 0x01a00009);                                     /* jalr t5 */
    stl_p(p++, 0x01602021);                                     /* move a0,t3 */
    /* 0x83c YAMON print_count */
    stl_p(p++, 0x03e06821);                                     /* move t5,ra */
    stl_p(p++, 0x00805821);                                     /* move t3,a0 */
    stl_p(p++, 0x00a05021);                                     /* move t2,a1 */
    stl_p(p++, 0x00c06021);                                     /* move t4,a2 */
    stl_p(p++, 0x91440000);                                     /* lbu a0,0(t2) */
    stl_p(p++, 0x0ff0021c);                                     /* jal 870 */
    stl_p(p++, 0x00000000);                                     /* nop */
    stl_p(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
    stl_p(p++, 0x258cffff);                                     /* addiu t4,t4,-1 */
    stl_p(p++, 0x1580fffa);                                     /* bnez t4,84c */
    stl_p(p++, 0x00000000);                                     /* nop */
    stl_p(p++, 0x01a00009);                                     /* jalr t5 */
    stl_p(p++, 0x01602021);                                     /* move a0,t3 */
    /* 0x870 */
    stl_p(p++, 0x3c08b800);                                     /* lui t0,0xb400 */
    stl_p(p++, 0x350803f8);                                     /* ori t0,t0,0x3f8 */
    stl_p(p++, 0x91090005);                                     /* lbu t1,5(t0) */
    stl_p(p++, 0x00000000);                                     /* nop */
    stl_p(p++, 0x31290040);                                     /* andi t1,t1,0x40 */
    stl_p(p++, 0x1120fffc);                                     /* beqz t1,878 <outch+0x8> */
    stl_p(p++, 0x00000000);                                     /* nop */
    stl_p(p++, 0x03e00009);                                     /* jalr ra */
    stl_p(p++, 0xa1040000);                                     /* sb a0,0(t0) */

}

static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
                                        const char *string, ...)
{
    va_list ap;
    int32_t table_addr;

    if (index >= ENVP_NB_ENTRIES)
        return;

    if (string == NULL) {
        prom_buf[index] = 0;
        return;
    }

    table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
    prom_buf[index] = tswap32(ENVP_ADDR + table_addr);

    va_start(ap, string);
    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
    va_end(ap);
}

/* Kernel */
static int64_t load_kernel (void)
{
    int64_t kernel_entry, kernel_high;
    long initrd_size;
    ram_addr_t initrd_offset;
    int big_endian;
    uint32_t *prom_buf;
    long prom_size;
    int prom_index = 0;
    uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);

#ifdef TARGET_WORDS_BIGENDIAN
    big_endian = 1;
#else
    big_endian = 0;
#endif

    if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
                 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
                 big_endian, ELF_MACHINE, 1) < 0) {
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
                loaderparams.kernel_filename);
        exit(1);
    }

    /* Sanity check where the kernel has been linked */
    if (kvm_enabled()) {
        if (kernel_entry & 0x80000000ll) {
            error_report("KVM guest kernels must be linked in useg. "
                         "Did you forget to enable CONFIG_KVM_GUEST?");
            exit(1);
        }

        xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
    } else {
        if (!(kernel_entry & 0x80000000ll)) {
            error_report("KVM guest kernels aren't supported with TCG. "
                         "Did you unintentionally enable CONFIG_KVM_GUEST?");
            exit(1);
        }

        xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
    }

    /* load initrd */
    initrd_size = 0;
    initrd_offset = 0;
    if (loaderparams.initrd_filename) {
        initrd_size = get_image_size (loaderparams.initrd_filename);
        if (initrd_size > 0) {
            initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
            if (initrd_offset + initrd_size > ram_size) {
                fprintf(stderr,
                        "qemu: memory too small for initial ram disk '%s'\n",
                        loaderparams.initrd_filename);
                exit(1);
            }
            initrd_size = load_image_targphys(loaderparams.initrd_filename,
                                              initrd_offset,
                                              ram_size - initrd_offset);
        }
        if (initrd_size == (target_ulong) -1) {
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                    loaderparams.initrd_filename);
            exit(1);
        }
    }

    /* Setup prom parameters. */
    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
    prom_buf = g_malloc(prom_size);

    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
    if (initrd_size > 0) {
        prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
                 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
                 loaderparams.kernel_cmdline);
    } else {
        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
    }

    prom_set(prom_buf, prom_index++, "memsize");
    prom_set(prom_buf, prom_index++, "%i",
             MIN(loaderparams.ram_size, 256 << 20));

    prom_set(prom_buf, prom_index++, "modetty0");
    prom_set(prom_buf, prom_index++, "38400n8r");
    prom_set(prom_buf, prom_index++, NULL);

    rom_add_blob_fixed("prom", prom_buf, prom_size,
                       cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));

    g_free(prom_buf);
    return kernel_entry;
}

static void malta_mips_config(MIPSCPU *cpu)
{
    CPUMIPSState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

    env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
                         ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
}

static void main_cpu_reset(void *opaque)
{
    MIPSCPU *cpu = opaque;
    CPUMIPSState *env = &cpu->env;

    cpu_reset(CPU(cpu));

    /* The bootloader does not need to be rewritten as it is located in a
       read only location. The kernel location and the arguments table
       location does not change. */
    if (loaderparams.kernel_filename) {
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
    }

    malta_mips_config(cpu);

    if (kvm_enabled()) {
        /* Start running from the bootloader we wrote to end of RAM */
        env->active_tc.PC = 0x40000000 + loaderparams.ram_size;
    }
}

static void cpu_request_exit(void *opaque, int irq, int level)
{
    CPUState *cpu = current_cpu;

    if (cpu && level) {
        cpu_exit(cpu);
    }
}

static
void mips_malta_init(MachineState *machine)
{
    ram_addr_t ram_size = machine->ram_size;
    ram_addr_t ram_low_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    char *filename;
    pflash_t *fl;
    MemoryRegion *system_memory = get_system_memory();
    MemoryRegion *ram_high = g_new(MemoryRegion, 1);
    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
    MemoryRegion *ram_low_postio;
    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
    target_long bios_size = FLASH_SIZE;
    const size_t smbus_eeprom_size = 8 * 256;
    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
    int64_t kernel_entry, bootloader_run_addr;
    PCIBus *pci_bus;
    ISABus *isa_bus;
    MIPSCPU *cpu;
    CPUMIPSState *env;
    qemu_irq *isa_irq;
    qemu_irq *cpu_exit_irq;
    int piix4_devfn;
    I2CBus *smbus;
    int i;
    DriveInfo *dinfo;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    DriveInfo *fd[MAX_FD];
    int fl_idx = 0;
    int fl_sectors = bios_size >> 16;
    int be;

    DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
    MaltaState *s = MIPS_MALTA(dev);

    /* The whole address space decoded by the GT-64120A doesn't generate
       exception when accessing invalid memory. Create an empty slot to
       emulate this feature. */
    empty_slot_init(0, 0x20000000);

    qdev_init_nofail(dev);

    /* Make sure the first 3 serial ports are associated with a device. */
    for(i = 0; i < 3; i++) {
        if (!serial_hds[i]) {
            char label[32];
            snprintf(label, sizeof(label), "serial%d", i);
            serial_hds[i] = qemu_chr_new(label, "null", NULL);
        }
    }

    /* init CPUs */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "20Kc";
#else
        cpu_model = "24Kf";
#endif
    }

    for (i = 0; i < smp_cpus; i++) {
        cpu = cpu_mips_init(cpu_model);
        if (cpu == NULL) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }
        env = &cpu->env;

        /* Init internal devices */
        cpu_mips_irq_init_cpu(env);
        cpu_mips_clock_init(env);
        qemu_register_reset(main_cpu_reset, cpu);
    }
    cpu = MIPS_CPU(first_cpu);
    env = &cpu->env;

    /* allocate RAM */
    if (ram_size > (2048u << 20)) {
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d MB, maximum 2048 MB\n",
                ((unsigned int)ram_size / (1 << 20)));
        exit(1);
    }

    /* register RAM at high address where it is undisturbed by IO */
    memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
                                         ram_size);
    memory_region_add_subregion(system_memory, 0x80000000, ram_high);

    /* alias for pre IO hole access */
    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
                             ram_high, 0, MIN(ram_size, (256 << 20)));
    memory_region_add_subregion(system_memory, 0, ram_low_preio);

    /* alias for post IO hole access, if there is enough RAM */
    if (ram_size > (512 << 20)) {
        ram_low_postio = g_new(MemoryRegion, 1);
        memory_region_init_alias(ram_low_postio, NULL,
                                 "mips_malta_low_postio.ram",
                                 ram_high, 512 << 20,
                                 ram_size - (512 << 20));
        memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
    }

    /* generate SPD EEPROM data */
    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);

#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif
    /* FPGA */
    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
    malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[4], serial_hds[2]);

    /* Load firmware in flash / BIOS. */
    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
#ifdef DEBUG_BOARD_INIT
    if (dinfo) {
        printf("Register parallel flash %d size " TARGET_FMT_lx " at "
               "addr %08llx '%s' %x\n",
               fl_idx, bios_size, FLASH_ADDRESS,
               blk_name(dinfo->bdrv), fl_sectors);
    }
#endif
    fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
                               BIOS_SIZE,
                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
                               65536, fl_sectors,
                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
    bios = pflash_cfi01_get_memory(fl);
    fl_idx++;
    if (kernel_filename) {
        ram_low_size = MIN(ram_size, 256 << 20);
        /* For KVM we reserve 1MB of RAM for running bootloader */
        if (kvm_enabled()) {
            ram_low_size -= 0x100000;
            bootloader_run_addr = 0x40000000 + ram_low_size;
        } else {
            bootloader_run_addr = 0xbfc00000;
        }

        /* Write a small bootloader to the flash location. */
        loaderparams.ram_size = ram_low_size;
        loaderparams.kernel_filename = kernel_filename;
        loaderparams.kernel_cmdline = kernel_cmdline;
        loaderparams.initrd_filename = initrd_filename;
        kernel_entry = load_kernel();

        write_bootloader(env, memory_region_get_ram_ptr(bios),
                         bootloader_run_addr, kernel_entry);
        if (kvm_enabled()) {
            /* Write the bootloader code @ the end of RAM, 1MB reserved */
            write_bootloader(env, memory_region_get_ram_ptr(ram_low_preio) +
                                    ram_low_size,
                             bootloader_run_addr, kernel_entry);
        }
    } else {
        /* The flash region isn't executable from a KVM guest */
        if (kvm_enabled()) {
            error_report("KVM enabled but no -kernel argument was specified. "
                         "Booting from flash is not supported with KVM.");
            exit(1);
        }
        /* Load firmware from flash. */
        if (!dinfo) {
            /* Load a BIOS image. */
            if (bios_name == NULL) {
                bios_name = BIOS_FILENAME;
            }
            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
            if (filename) {
                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
                                                BIOS_SIZE);
                g_free(filename);
            } else {
                bios_size = -1;
            }
            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
                !kernel_filename && !qtest_enabled()) {
                error_report("Could not load MIPS bios '%s', and no "
                             "-kernel argument was specified", bios_name);
                exit(1);
            }
        }
        /* In little endian mode the 32bit words in the bios are swapped,
           a neat trick which allows bi-endian firmware. */
#ifndef TARGET_WORDS_BIGENDIAN
        {
            uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
            if (!addr) {
                addr = memory_region_get_ram_ptr(bios);
            }
            end = (void *)addr + MIN(bios_size, 0x3e0000);
            while (addr < end) {
                bswap32s(addr);
                addr++;
            }
        }
#endif
    }

    /*
     * Map the BIOS at a 2nd physical location, as on the real board.
     * Copy it so that we can patch in the MIPS revision, which cannot be
     * handled by an overlapping region as the resulting ROM code subpage
     * regions are not executable.
     */
    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
                           &error_abort);
    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
                  FLASH_ADDRESS, BIOS_SIZE)) {
        memcpy(memory_region_get_ram_ptr(bios_copy),
               memory_region_get_ram_ptr(bios), BIOS_SIZE);
    }
    memory_region_set_readonly(bios_copy, true);
    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);

    /* Board ID = 0x420 (Malta Board with CoreLV) */
    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);

    /* Init internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /*
     * We have a circular dependency problem: pci_bus depends on isa_irq,
     * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
     * on piix4, and piix4 depends on pci_bus.  To stop the cycle we have
     * qemu_irq_proxy() adds an extra bit of indirection, allowing us
     * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
     */
    isa_irq = qemu_irq_proxy(&s->i8259, 16);

    /* Northbridge */
    pci_bus = gt64120_register(isa_irq);

    /* Southbridge */
    ide_drive_get(hd, ARRAY_SIZE(hd));

    piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);

    /* Interrupt controller */
    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
    s->i8259 = i8259_init(isa_bus, env->irq[2]);

    isa_bus_irqs(isa_bus, s->i8259);
    pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
    pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
    smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
                          isa_get_irq(NULL, 9), NULL, 0, NULL, NULL);
    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
    g_free(smbus_eeprom_buf);
    pit = pit_init(isa_bus, 0x40, 0, NULL);
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
    DMA_init(0, cpu_exit_irq);

    /* Super I/O */
    isa_create_simple(isa_bus, "i8042");

    rtc_init(isa_bus, 2000, NULL);
    serial_hds_isa_init(isa_bus, 2);
    parallel_hds_isa_init(isa_bus, 1);

    for(i = 0; i < MAX_FD; i++) {
        fd[i] = drive_get(IF_FLOPPY, 0, i);
    }
    fdctrl_init_isa(isa_bus, fd);

    /* Network card */
    network_init(pci_bus);

    /* Optional PCI video card */
    pci_vga_init(pci_bus);
}

static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
{
    return 0;
}

static void mips_malta_class_init(ObjectClass *klass, void *data)
{
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);

    k->init = mips_malta_sysbus_device_init;
}

static const TypeInfo mips_malta_device = {
    .name          = TYPE_MIPS_MALTA,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(MaltaState),
    .class_init    = mips_malta_class_init,
};

static QEMUMachine mips_malta_machine = {
    .name = "malta",
    .desc = "MIPS Malta Core LV",
    .init = mips_malta_init,
    .max_cpus = 16,
    .is_default = 1,
};

static void mips_malta_register_types(void)
{
    type_register_static(&mips_malta_device);
}

static void mips_malta_machine_init(void)
{
    qemu_register_machine(&mips_malta_machine);
}

type_init(mips_malta_register_types)
machine_init(mips_malta_machine_init);