aboutsummaryrefslogtreecommitdiff
path: root/hw/mem/memory-device.c
blob: e098585cda81dc83e460b4de708e72f2cc02da83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
 * Memory Device Interface
 *
 * Copyright ProfitBricks GmbH 2012
 * Copyright (C) 2014 Red Hat Inc
 * Copyright (c) 2018 Red Hat Inc
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "hw/mem/memory-device.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "qemu/range.h"
#include "hw/virtio/vhost.h"
#include "sysemu/kvm.h"
#include "exec/address-spaces.h"
#include "trace.h"

static bool memory_device_is_empty(const MemoryDeviceState *md)
{
    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
    Error *local_err = NULL;
    MemoryRegion *mr;

    /* dropping const here is fine as we don't touch the memory region */
    mr = mdc->get_memory_region((MemoryDeviceState *)md, &local_err);
    if (local_err) {
        /* Not empty, we'll report errors later when containing the MR again. */
        error_free(local_err);
        return false;
    }
    return !mr;
}

static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
{
    const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
    const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
    const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
    const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
    const uint64_t addr_a = mdc_a->get_addr(md_a);
    const uint64_t addr_b = mdc_b->get_addr(md_b);

    if (addr_a > addr_b) {
        return 1;
    } else if (addr_a < addr_b) {
        return -1;
    }
    return 0;
}

static int memory_device_build_list(Object *obj, void *opaque)
{
    GSList **list = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
        DeviceState *dev = DEVICE(obj);
        if (dev->realized) { /* only realized memory devices matter */
            *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
        }
    }

    object_child_foreach(obj, memory_device_build_list, opaque);
    return 0;
}

static unsigned int memory_device_get_memslots(MemoryDeviceState *md)
{
    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);

    if (mdc->get_memslots) {
        return mdc->get_memslots(md);
    }
    return 1;
}

/*
 * Memslots that are reserved by memory devices (required but still reported
 * as free from KVM / vhost).
 */
static unsigned int get_reserved_memslots(MachineState *ms)
{
    if (ms->device_memory->used_memslots >
        ms->device_memory->required_memslots) {
        /* This is unexpected, and we warned already in the memory notifier. */
        return 0;
    }
    return ms->device_memory->required_memslots -
           ms->device_memory->used_memslots;
}

unsigned int memory_devices_get_reserved_memslots(void)
{
    if (!current_machine->device_memory) {
        return 0;
    }
    return get_reserved_memslots(current_machine);
}

bool memory_devices_memslot_auto_decision_active(void)
{
    if (!current_machine->device_memory) {
        return false;
    }

    return current_machine->device_memory->memslot_auto_decision_active;
}

static unsigned int memory_device_memslot_decision_limit(MachineState *ms,
                                                         MemoryRegion *mr)
{
    const unsigned int reserved = get_reserved_memslots(ms);
    const uint64_t size = memory_region_size(mr);
    unsigned int max = vhost_get_max_memslots();
    unsigned int free = vhost_get_free_memslots();
    uint64_t available_space;
    unsigned int memslots;

    if (kvm_enabled()) {
        max = MIN(max, kvm_get_max_memslots());
        free = MIN(free, kvm_get_free_memslots());
    }

    /*
     * If we only have less overall memslots than what we consider reasonable,
     * just keep it to a minimum.
     */
    if (max < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS) {
        return 1;
    }

    /*
     * Consider our soft-limit across all memory devices. We don't really
     * expect to exceed this limit in reasonable configurations.
     */
    if (MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT <=
        ms->device_memory->required_memslots) {
        return 1;
    }
    memslots = MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT -
               ms->device_memory->required_memslots;

    /*
     * Consider the actually still free memslots. This is only relevant if
     * other memslot consumers would consume *significantly* more memslots than
     * what we prepared for (> 253). Unlikely, but let's just handle it
     * cleanly.
     */
    memslots = MIN(memslots, free - reserved);
    if (memslots < 1 || unlikely(free < reserved)) {
        return 1;
    }

    /* We cannot have any other memory devices? So give all to this device. */
    if (size == ms->maxram_size - ms->ram_size) {
        return memslots;
    }

    /*
     * Simple heuristic: equally distribute the memslots over the space
     * still available for memory devices.
     */
    available_space = ms->maxram_size - ms->ram_size -
                      ms->device_memory->used_region_size;
    memslots = (double)memslots * size / available_space;
    return memslots < 1 ? 1 : memslots;
}

static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md,
                                        MemoryRegion *mr, Error **errp)
{
    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
    const uint64_t used_region_size = ms->device_memory->used_region_size;
    const uint64_t size = memory_region_size(mr);
    const unsigned int reserved_memslots = get_reserved_memslots(ms);
    unsigned int required_memslots, memslot_limit;

    /*
     * Instruct the device to decide how many memslots to use, if applicable,
     * before we query the number of required memslots the first time.
     */
    if (mdc->decide_memslots) {
        memslot_limit = memory_device_memslot_decision_limit(ms, mr);
        mdc->decide_memslots(md, memslot_limit);
    }
    required_memslots = memory_device_get_memslots(md);

    /* we will need memory slots for kvm and vhost */
    if (kvm_enabled() &&
        kvm_get_free_memslots() < required_memslots + reserved_memslots) {
        error_setg(errp, "hypervisor has not enough free memory slots left");
        return;
    }
    if (vhost_get_free_memslots() < required_memslots + reserved_memslots) {
        error_setg(errp, "a used vhost backend has not enough free memory slots left");
        return;
    }

    /* will we exceed the total amount of memory specified */
    if (used_region_size + size < used_region_size ||
        used_region_size + size > ms->maxram_size - ms->ram_size) {
        error_setg(errp, "not enough space, currently 0x%" PRIx64
                   " in use of total space for memory devices 0x" RAM_ADDR_FMT,
                   used_region_size, ms->maxram_size - ms->ram_size);
        return;
    }

}

static uint64_t memory_device_get_free_addr(MachineState *ms,
                                            const uint64_t *hint,
                                            uint64_t align, uint64_t size,
                                            Error **errp)
{
    GSList *list = NULL, *item;
    Range as, new = range_empty;

    range_init_nofail(&as, ms->device_memory->base,
                      memory_region_size(&ms->device_memory->mr));

    /* start of address space indicates the maximum alignment we expect */
    if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
        warn_report("the alignment (0x%" PRIx64 ") exceeds the expected"
                    " maximum alignment, memory will get fragmented and not"
                    " all 'maxmem' might be usable for memory devices.",
                    align);
    }

    if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
        error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
                   align);
        return 0;
    }

    if (hint) {
        if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
            error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
                       "], usable range for memory devices [0x%" PRIx64 ":0x%"
                       PRIx64 "]", *hint, size, range_lob(&as),
                       range_size(&as));
            return 0;
        }
    } else {
        if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) {
            error_setg(errp, "can't add memory device, device too big");
            return 0;
        }
    }

    /* find address range that will fit new memory device */
    object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
    for (item = list; item; item = g_slist_next(item)) {
        const MemoryDeviceState *md = item->data;
        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
        uint64_t next_addr;
        Range tmp;

        if (memory_device_is_empty(md)) {
            continue;
        }

        range_init_nofail(&tmp, mdc->get_addr(md),
                          memory_device_get_region_size(md, &error_abort));

        if (range_overlaps_range(&tmp, &new)) {
            if (hint) {
                const DeviceState *d = DEVICE(md);
                error_setg(errp, "address range conflicts with memory device"
                           " id='%s'", d->id ? d->id : "(unnamed)");
                goto out;
            }

            next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
            if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
                range_make_empty(&new);
                break;
            }
        } else if (range_lob(&tmp) > range_upb(&new)) {
            break;
        }
    }

    if (!range_contains_range(&as, &new)) {
        error_setg(errp, "could not find position in guest address space for "
                   "memory device - memory fragmented due to alignments");
    }
out:
    g_slist_free(list);
    return range_lob(&new);
}

MemoryDeviceInfoList *qmp_memory_device_list(void)
{
    GSList *devices = NULL, *item;
    MemoryDeviceInfoList *list = NULL, **tail = &list;

    object_child_foreach(qdev_get_machine(), memory_device_build_list,
                         &devices);

    for (item = devices; item; item = g_slist_next(item)) {
        const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
        MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);

        /* Let's query infotmation even for empty memory devices. */
        mdc->fill_device_info(md, info);

        QAPI_LIST_APPEND(tail, info);
    }

    g_slist_free(devices);

    return list;
}

static int memory_device_plugged_size(Object *obj, void *opaque)
{
    uint64_t *size = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
        const DeviceState *dev = DEVICE(obj);
        const MemoryDeviceState *md = MEMORY_DEVICE(obj);
        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);

        if (dev->realized && !memory_device_is_empty(md)) {
            *size += mdc->get_plugged_size(md, &error_abort);
        }
    }

    object_child_foreach(obj, memory_device_plugged_size, opaque);
    return 0;
}

uint64_t get_plugged_memory_size(void)
{
    uint64_t size = 0;

    memory_device_plugged_size(qdev_get_machine(), &size);

    return size;
}

void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
                            const uint64_t *legacy_align, Error **errp)
{
    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
    Error *local_err = NULL;
    uint64_t addr, align = 0;
    MemoryRegion *mr;

    /* We support empty memory devices even without device memory. */
    if (memory_device_is_empty(md)) {
        return;
    }

    if (!ms->device_memory) {
        error_setg(errp, "the configuration is not prepared for memory devices"
                         " (e.g., for memory hotplug), consider specifying the"
                         " maxmem option");
        return;
    }

    mr = mdc->get_memory_region(md, &local_err);
    if (local_err) {
        goto out;
    }

    memory_device_check_addable(ms, md, mr, &local_err);
    if (local_err) {
        goto out;
    }

    /*
     * We always want the memory region size to be multiples of the memory
     * region alignment: for example, DIMMs with 1G+1byte size don't make
     * any sense. Note that we don't check that the size is multiples
     * of any additional alignment requirements the memory device might
     * have when it comes to the address in physical address space.
     */
    if (!QEMU_IS_ALIGNED(memory_region_size(mr),
                         memory_region_get_alignment(mr))) {
        error_setg(errp, "backend memory size must be multiple of 0x%"
                   PRIx64, memory_region_get_alignment(mr));
        return;
    }

    if (legacy_align) {
        align = *legacy_align;
    } else {
        if (mdc->get_min_alignment) {
            align = mdc->get_min_alignment(md);
        }
        align = MAX(align, memory_region_get_alignment(mr));
    }
    addr = mdc->get_addr(md);
    addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
                                       memory_region_size(mr), &local_err);
    if (local_err) {
        goto out;
    }
    mdc->set_addr(md, addr, &local_err);
    if (!local_err) {
        trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
                                     addr);
    }
out:
    error_propagate(errp, local_err);
}

void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
{
    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
    unsigned int memslots;
    uint64_t addr;
    MemoryRegion *mr;

    if (memory_device_is_empty(md)) {
        return;
    }

    memslots = memory_device_get_memslots(md);
    addr = mdc->get_addr(md);

    /*
     * We expect that a previous call to memory_device_pre_plug() succeeded, so
     * it can't fail at this point.
     */
    mr = mdc->get_memory_region(md, &error_abort);
    g_assert(ms->device_memory);

    ms->device_memory->used_region_size += memory_region_size(mr);
    ms->device_memory->required_memslots += memslots;
    if (mdc->decide_memslots && memslots > 1) {
        ms->device_memory->memslot_auto_decision_active++;
    }

    memory_region_add_subregion(&ms->device_memory->mr,
                                addr - ms->device_memory->base, mr);
    trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
}

void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
{
    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
    const unsigned int memslots = memory_device_get_memslots(md);
    MemoryRegion *mr;

    if (memory_device_is_empty(md)) {
        return;
    }

    /*
     * We expect that a previous call to memory_device_pre_plug() succeeded, so
     * it can't fail at this point.
     */
    mr = mdc->get_memory_region(md, &error_abort);
    g_assert(ms->device_memory);

    memory_region_del_subregion(&ms->device_memory->mr, mr);

    if (mdc->decide_memslots && memslots > 1) {
        ms->device_memory->memslot_auto_decision_active--;
    }
    ms->device_memory->used_region_size -= memory_region_size(mr);
    ms->device_memory->required_memslots -= memslots;
    trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
                               mdc->get_addr(md));
}

uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
                                       Error **errp)
{
    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
    MemoryRegion *mr;

    /* dropping const here is fine as we don't touch the memory region */
    mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
    if (!mr) {
        return 0;
    }

    return memory_region_size(mr);
}

static void memory_devices_region_mod(MemoryListener *listener,
                                      MemoryRegionSection *mrs, bool add)
{
    DeviceMemoryState *dms = container_of(listener, DeviceMemoryState,
                                          listener);

    if (!memory_region_is_ram(mrs->mr)) {
        warn_report("Unexpected memory region mapped into device memory region.");
        return;
    }

    /*
     * The expectation is that each distinct RAM memory region section in
     * our region for memory devices consumes exactly one memslot in KVM
     * and in vhost. For vhost, this is true, except:
     * * ROM memory regions don't consume a memslot. These get used very
     *   rarely for memory devices (R/O NVDIMMs).
     * * Memslots without a fd (memory-backend-ram) don't necessarily
     *   consume a memslot. Such setups are quite rare and possibly bogus:
     *   the memory would be inaccessible by such vhost devices.
     *
     * So for vhost, in corner cases we might over-estimate the number of
     * memslots that are currently used or that might still be reserved
     * (required - used).
     */
    dms->used_memslots += add ? 1 : -1;

    if (dms->used_memslots > dms->required_memslots) {
        warn_report("Memory devices use more memory slots than indicated as required.");
    }
}

static void memory_devices_region_add(MemoryListener *listener,
                                      MemoryRegionSection *mrs)
{
    return memory_devices_region_mod(listener, mrs, true);
}

static void memory_devices_region_del(MemoryListener *listener,
                                      MemoryRegionSection *mrs)
{
    return memory_devices_region_mod(listener, mrs, false);
}

void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size)
{
    g_assert(size);
    g_assert(!ms->device_memory);
    ms->device_memory = g_new0(DeviceMemoryState, 1);
    ms->device_memory->base = base;

    memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory",
                       size);
    address_space_init(&ms->device_memory->as, &ms->device_memory->mr,
                       "device-memory");
    memory_region_add_subregion(get_system_memory(), ms->device_memory->base,
                                &ms->device_memory->mr);

    /* Track the number of memslots used by memory devices. */
    ms->device_memory->listener.region_add = memory_devices_region_add;
    ms->device_memory->listener.region_del = memory_devices_region_del;
    memory_listener_register(&ms->device_memory->listener,
                             &ms->device_memory->as);
}

static const TypeInfo memory_device_info = {
    .name          = TYPE_MEMORY_DEVICE,
    .parent        = TYPE_INTERFACE,
    .class_size = sizeof(MemoryDeviceClass),
};

static void memory_device_register_types(void)
{
    type_register_static(&memory_device_info);
}

type_init(memory_device_register_types)