aboutsummaryrefslogtreecommitdiff
path: root/hw/mac_dbdma.c
blob: 350d901edc62767e3fa48fb2265cfb3306dc4f94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/*
 * PowerMac descriptor-based DMA emulation
 *
 * Copyright (c) 2005-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2009 Laurent Vivier
 *
 * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
 *
 *   Definitions for using the Apple Descriptor-Based DMA controller
 *   in Power Macintosh computers.
 *
 *   Copyright (C) 1996 Paul Mackerras.
 *
 * some parts from mol 0.9.71
 *
 *   Descriptor based DMA emulation
 *
 *   Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "isa.h"
#include "mac_dbdma.h"

/* debug DBDMA */
//#define DEBUG_DBDMA

#ifdef DEBUG_DBDMA
#define DBDMA_DPRINTF(fmt, ...)                                 \
    do { printf("DBDMA: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DBDMA_DPRINTF(fmt, ...)
#endif

/*
 */

/*
 * DBDMA control/status registers.  All little-endian.
 */

#define DBDMA_CONTROL         0x00
#define DBDMA_STATUS          0x01
#define DBDMA_CMDPTR_HI       0x02
#define DBDMA_CMDPTR_LO       0x03
#define DBDMA_INTR_SEL        0x04
#define DBDMA_BRANCH_SEL      0x05
#define DBDMA_WAIT_SEL        0x06
#define DBDMA_XFER_MODE       0x07
#define DBDMA_DATA2PTR_HI     0x08
#define DBDMA_DATA2PTR_LO     0x09
#define DBDMA_RES1            0x0A
#define DBDMA_ADDRESS_HI      0x0B
#define DBDMA_BRANCH_ADDR_HI  0x0C
#define DBDMA_RES2            0x0D
#define DBDMA_RES3            0x0E
#define DBDMA_RES4            0x0F

#define DBDMA_REGS            16
#define DBDMA_SIZE            (DBDMA_REGS * sizeof(uint32_t))

#define DBDMA_CHANNEL_SHIFT   7
#define DBDMA_CHANNEL_SIZE    (1 << DBDMA_CHANNEL_SHIFT)

#define DBDMA_CHANNELS        (0x1000 >> DBDMA_CHANNEL_SHIFT)

/* Bits in control and status registers */

#define RUN	0x8000
#define PAUSE	0x4000
#define FLUSH	0x2000
#define WAKE	0x1000
#define DEAD	0x0800
#define ACTIVE	0x0400
#define BT	0x0100
#define DEVSTAT	0x00ff

/*
 * DBDMA command structure.  These fields are all little-endian!
 */

typedef struct dbdma_cmd {
    uint16_t req_count;	  /* requested byte transfer count */
    uint16_t command;	  /* command word (has bit-fields) */
    uint32_t phy_addr;	  /* physical data address */
    uint32_t cmd_dep;	  /* command-dependent field */
    uint16_t res_count;	  /* residual count after completion */
    uint16_t xfer_status; /* transfer status */
} dbdma_cmd;

/* DBDMA command values in command field */

#define COMMAND_MASK    0xf000
#define OUTPUT_MORE	0x0000	/* transfer memory data to stream */
#define OUTPUT_LAST	0x1000	/* ditto followed by end marker */
#define INPUT_MORE	0x2000	/* transfer stream data to memory */
#define INPUT_LAST	0x3000	/* ditto, expect end marker */
#define STORE_WORD	0x4000	/* write word (4 bytes) to device reg */
#define LOAD_WORD	0x5000	/* read word (4 bytes) from device reg */
#define DBDMA_NOP	0x6000	/* do nothing */
#define DBDMA_STOP	0x7000	/* suspend processing */

/* Key values in command field */

#define KEY_MASK        0x0700
#define KEY_STREAM0	0x0000	/* usual data stream */
#define KEY_STREAM1	0x0100	/* control/status stream */
#define KEY_STREAM2	0x0200	/* device-dependent stream */
#define KEY_STREAM3	0x0300	/* device-dependent stream */
#define KEY_STREAM4	0x0400	/* reserved */
#define KEY_REGS	0x0500	/* device register space */
#define KEY_SYSTEM	0x0600	/* system memory-mapped space */
#define KEY_DEVICE	0x0700	/* device memory-mapped space */

/* Interrupt control values in command field */

#define INTR_MASK       0x0030
#define INTR_NEVER	0x0000	/* don't interrupt */
#define INTR_IFSET	0x0010	/* intr if condition bit is 1 */
#define INTR_IFCLR	0x0020	/* intr if condition bit is 0 */
#define INTR_ALWAYS	0x0030	/* always interrupt */

/* Branch control values in command field */

#define BR_MASK         0x000c
#define BR_NEVER	0x0000	/* don't branch */
#define BR_IFSET	0x0004	/* branch if condition bit is 1 */
#define BR_IFCLR	0x0008	/* branch if condition bit is 0 */
#define BR_ALWAYS	0x000c	/* always branch */

/* Wait control values in command field */

#define WAIT_MASK       0x0003
#define WAIT_NEVER	0x0000	/* don't wait */
#define WAIT_IFSET	0x0001	/* wait if condition bit is 1 */
#define WAIT_IFCLR	0x0002	/* wait if condition bit is 0 */
#define WAIT_ALWAYS	0x0003	/* always wait */

typedef struct DBDMA_channel {
    int channel;
    uint32_t regs[DBDMA_REGS];
    qemu_irq irq;
    DBDMA_io io;
    DBDMA_rw rw;
    DBDMA_flush flush;
    dbdma_cmd current;
    int processing;
} DBDMA_channel;

typedef struct {
    MemoryRegion mem;
    DBDMA_channel channels[DBDMA_CHANNELS];
} DBDMAState;

#ifdef DEBUG_DBDMA
static void dump_dbdma_cmd(dbdma_cmd *cmd)
{
    printf("dbdma_cmd %p\n", cmd);
    printf("    req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
    printf("    command 0x%04x\n", le16_to_cpu(cmd->command));
    printf("    phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
    printf("    cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
    printf("    res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
    printf("    xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status));
}
#else
static void dump_dbdma_cmd(dbdma_cmd *cmd)
{
}
#endif
static void dbdma_cmdptr_load(DBDMA_channel *ch)
{
    DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n",
                  ch->regs[DBDMA_CMDPTR_LO]);
    cpu_physical_memory_read(ch->regs[DBDMA_CMDPTR_LO],
                             (uint8_t*)&ch->current, sizeof(dbdma_cmd));
}

static void dbdma_cmdptr_save(DBDMA_channel *ch)
{
    DBDMA_DPRINTF("dbdma_cmdptr_save 0x%08x\n",
                  ch->regs[DBDMA_CMDPTR_LO]);
    DBDMA_DPRINTF("xfer_status 0x%08x res_count 0x%04x\n",
                  le16_to_cpu(ch->current.xfer_status),
                  le16_to_cpu(ch->current.res_count));
    cpu_physical_memory_write(ch->regs[DBDMA_CMDPTR_LO],
                              (uint8_t*)&ch->current, sizeof(dbdma_cmd));
}

static void kill_channel(DBDMA_channel *ch)
{
    DBDMA_DPRINTF("kill_channel\n");

    ch->regs[DBDMA_STATUS] |= DEAD;
    ch->regs[DBDMA_STATUS] &= ~ACTIVE;

    qemu_irq_raise(ch->irq);
}

static void conditional_interrupt(DBDMA_channel *ch)
{
    dbdma_cmd *current = &ch->current;
    uint16_t intr;
    uint16_t sel_mask, sel_value;
    uint32_t status;
    int cond;

    DBDMA_DPRINTF("conditional_interrupt\n");

    intr = le16_to_cpu(current->command) & INTR_MASK;

    switch(intr) {
    case INTR_NEVER:  /* don't interrupt */
        return;
    case INTR_ALWAYS: /* always interrupt */
        qemu_irq_raise(ch->irq);
        return;
    }

    status = ch->regs[DBDMA_STATUS] & DEVSTAT;

    sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f;
    sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f;

    cond = (status & sel_mask) == (sel_value & sel_mask);

    switch(intr) {
    case INTR_IFSET:  /* intr if condition bit is 1 */
        if (cond)
            qemu_irq_raise(ch->irq);
        return;
    case INTR_IFCLR:  /* intr if condition bit is 0 */
        if (!cond)
            qemu_irq_raise(ch->irq);
        return;
    }
}

static int conditional_wait(DBDMA_channel *ch)
{
    dbdma_cmd *current = &ch->current;
    uint16_t wait;
    uint16_t sel_mask, sel_value;
    uint32_t status;
    int cond;

    DBDMA_DPRINTF("conditional_wait\n");

    wait = le16_to_cpu(current->command) & WAIT_MASK;

    switch(wait) {
    case WAIT_NEVER:  /* don't wait */
        return 0;
    case WAIT_ALWAYS: /* always wait */
        return 1;
    }

    status = ch->regs[DBDMA_STATUS] & DEVSTAT;

    sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f;
    sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f;

    cond = (status & sel_mask) == (sel_value & sel_mask);

    switch(wait) {
    case WAIT_IFSET:  /* wait if condition bit is 1 */
        if (cond)
            return 1;
        return 0;
    case WAIT_IFCLR:  /* wait if condition bit is 0 */
        if (!cond)
            return 1;
        return 0;
    }
    return 0;
}

static void next(DBDMA_channel *ch)
{
    uint32_t cp;

    ch->regs[DBDMA_STATUS] &= ~BT;

    cp = ch->regs[DBDMA_CMDPTR_LO];
    ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd);
    dbdma_cmdptr_load(ch);
}

static void branch(DBDMA_channel *ch)
{
    dbdma_cmd *current = &ch->current;

    ch->regs[DBDMA_CMDPTR_LO] = current->cmd_dep;
    ch->regs[DBDMA_STATUS] |= BT;
    dbdma_cmdptr_load(ch);
}

static void conditional_branch(DBDMA_channel *ch)
{
    dbdma_cmd *current = &ch->current;
    uint16_t br;
    uint16_t sel_mask, sel_value;
    uint32_t status;
    int cond;

    DBDMA_DPRINTF("conditional_branch\n");

    /* check if we must branch */

    br = le16_to_cpu(current->command) & BR_MASK;

    switch(br) {
    case BR_NEVER:  /* don't branch */
        next(ch);
        return;
    case BR_ALWAYS: /* always branch */
        branch(ch);
        return;
    }

    status = ch->regs[DBDMA_STATUS] & DEVSTAT;

    sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f;
    sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f;

    cond = (status & sel_mask) == (sel_value & sel_mask);

    switch(br) {
    case BR_IFSET:  /* branch if condition bit is 1 */
        if (cond)
            branch(ch);
        else
            next(ch);
        return;
    case BR_IFCLR:  /* branch if condition bit is 0 */
        if (!cond)
            branch(ch);
        else
            next(ch);
        return;
    }
}

static QEMUBH *dbdma_bh;
static void channel_run(DBDMA_channel *ch);

static void dbdma_end(DBDMA_io *io)
{
    DBDMA_channel *ch = io->channel;
    dbdma_cmd *current = &ch->current;

    if (conditional_wait(ch))
        goto wait;

    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
    current->res_count = cpu_to_le16(io->len);
    dbdma_cmdptr_save(ch);
    if (io->is_last)
        ch->regs[DBDMA_STATUS] &= ~FLUSH;

    conditional_interrupt(ch);
    conditional_branch(ch);

wait:
    ch->processing = 0;
    if ((ch->regs[DBDMA_STATUS] & RUN) &&
        (ch->regs[DBDMA_STATUS] & ACTIVE))
        channel_run(ch);
}

static void start_output(DBDMA_channel *ch, int key, uint32_t addr,
                        uint16_t req_count, int is_last)
{
    DBDMA_DPRINTF("start_output\n");

    /* KEY_REGS, KEY_DEVICE and KEY_STREAM
     * are not implemented in the mac-io chip
     */

    DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key);
    if (!addr || key > KEY_STREAM3) {
        kill_channel(ch);
        return;
    }

    ch->io.addr = addr;
    ch->io.len = req_count;
    ch->io.is_last = is_last;
    ch->io.dma_end = dbdma_end;
    ch->io.is_dma_out = 1;
    ch->processing = 1;
    if (ch->rw) {
        ch->rw(&ch->io);
    }
}

static void start_input(DBDMA_channel *ch, int key, uint32_t addr,
                       uint16_t req_count, int is_last)
{
    DBDMA_DPRINTF("start_input\n");

    /* KEY_REGS, KEY_DEVICE and KEY_STREAM
     * are not implemented in the mac-io chip
     */

    if (!addr || key > KEY_STREAM3) {
        kill_channel(ch);
        return;
    }

    ch->io.addr = addr;
    ch->io.len = req_count;
    ch->io.is_last = is_last;
    ch->io.dma_end = dbdma_end;
    ch->io.is_dma_out = 0;
    ch->processing = 1;
    if (ch->rw) {
        ch->rw(&ch->io);
    }
}

static void load_word(DBDMA_channel *ch, int key, uint32_t addr,
                     uint16_t len)
{
    dbdma_cmd *current = &ch->current;
    uint32_t val;

    DBDMA_DPRINTF("load_word\n");

    /* only implements KEY_SYSTEM */

    if (key != KEY_SYSTEM) {
        printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
        kill_channel(ch);
        return;
    }

    cpu_physical_memory_read(addr, (uint8_t*)&val, len);

    if (len == 2)
        val = (val << 16) | (current->cmd_dep & 0x0000ffff);
    else if (len == 1)
        val = (val << 24) | (current->cmd_dep & 0x00ffffff);

    current->cmd_dep = val;

    if (conditional_wait(ch))
        goto wait;

    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
    dbdma_cmdptr_save(ch);
    ch->regs[DBDMA_STATUS] &= ~FLUSH;

    conditional_interrupt(ch);
    next(ch);

wait:
    qemu_bh_schedule(dbdma_bh);
}

static void store_word(DBDMA_channel *ch, int key, uint32_t addr,
                      uint16_t len)
{
    dbdma_cmd *current = &ch->current;
    uint32_t val;

    DBDMA_DPRINTF("store_word\n");

    /* only implements KEY_SYSTEM */

    if (key != KEY_SYSTEM) {
        printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
        kill_channel(ch);
        return;
    }

    val = current->cmd_dep;
    if (len == 2)
        val >>= 16;
    else if (len == 1)
        val >>= 24;

    cpu_physical_memory_write(addr, (uint8_t*)&val, len);

    if (conditional_wait(ch))
        goto wait;

    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
    dbdma_cmdptr_save(ch);
    ch->regs[DBDMA_STATUS] &= ~FLUSH;

    conditional_interrupt(ch);
    next(ch);

wait:
    qemu_bh_schedule(dbdma_bh);
}

static void nop(DBDMA_channel *ch)
{
    dbdma_cmd *current = &ch->current;

    if (conditional_wait(ch))
        goto wait;

    current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
    dbdma_cmdptr_save(ch);

    conditional_interrupt(ch);
    conditional_branch(ch);

wait:
    qemu_bh_schedule(dbdma_bh);
}

static void stop(DBDMA_channel *ch)
{
    ch->regs[DBDMA_STATUS] &= ~(ACTIVE|DEAD|FLUSH);

    /* the stop command does not increment command pointer */
}

static void channel_run(DBDMA_channel *ch)
{
    dbdma_cmd *current = &ch->current;
    uint16_t cmd, key;
    uint16_t req_count;
    uint32_t phy_addr;

    DBDMA_DPRINTF("channel_run\n");
    dump_dbdma_cmd(current);

    /* clear WAKE flag at command fetch */

    ch->regs[DBDMA_STATUS] &= ~WAKE;

    cmd = le16_to_cpu(current->command) & COMMAND_MASK;

    switch (cmd) {
    case DBDMA_NOP:
        nop(ch);
	return;

    case DBDMA_STOP:
        stop(ch);
	return;
    }

    key = le16_to_cpu(current->command) & 0x0700;
    req_count = le16_to_cpu(current->req_count);
    phy_addr = le32_to_cpu(current->phy_addr);

    if (key == KEY_STREAM4) {
        printf("command %x, invalid key 4\n", cmd);
        kill_channel(ch);
        return;
    }

    switch (cmd) {
    case OUTPUT_MORE:
        start_output(ch, key, phy_addr, req_count, 0);
	return;

    case OUTPUT_LAST:
        start_output(ch, key, phy_addr, req_count, 1);
	return;

    case INPUT_MORE:
        start_input(ch, key, phy_addr, req_count, 0);
	return;

    case INPUT_LAST:
        start_input(ch, key, phy_addr, req_count, 1);
	return;
    }

    if (key < KEY_REGS) {
        printf("command %x, invalid key %x\n", cmd, key);
        key = KEY_SYSTEM;
    }

    /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
     * and BRANCH is invalid
     */

    req_count = req_count & 0x0007;
    if (req_count & 0x4) {
        req_count = 4;
        phy_addr &= ~3;
    } else if (req_count & 0x2) {
        req_count = 2;
        phy_addr &= ~1;
    } else
        req_count = 1;

    switch (cmd) {
    case LOAD_WORD:
        load_word(ch, key, phy_addr, req_count);
	return;

    case STORE_WORD:
        store_word(ch, key, phy_addr, req_count);
	return;
    }
}

static void DBDMA_run(DBDMAState *s)
{
    int channel;

    for (channel = 0; channel < DBDMA_CHANNELS; channel++) {
        DBDMA_channel *ch = &s->channels[channel];
        uint32_t status = ch->regs[DBDMA_STATUS];
        if (!ch->processing && (status & RUN) && (status & ACTIVE)) {
            channel_run(ch);
        }
    }
}

static void DBDMA_run_bh(void *opaque)
{
    DBDMAState *s = opaque;

    DBDMA_DPRINTF("DBDMA_run_bh\n");

    DBDMA_run(s);
}

void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
                            DBDMA_rw rw, DBDMA_flush flush,
                            void *opaque)
{
    DBDMAState *s = dbdma;
    DBDMA_channel *ch = &s->channels[nchan];

    DBDMA_DPRINTF("DBDMA_register_channel 0x%x\n", nchan);

    ch->irq = irq;
    ch->channel = nchan;
    ch->rw = rw;
    ch->flush = flush;
    ch->io.opaque = opaque;
    ch->io.channel = ch;
}

void DBDMA_schedule(void)
{
    qemu_notify_event();
}

static void
dbdma_control_write(DBDMA_channel *ch)
{
    uint16_t mask, value;
    uint32_t status;

    mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff;
    value = ch->regs[DBDMA_CONTROL] & 0xffff;

    value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT);

    status = ch->regs[DBDMA_STATUS];

    status = (value & mask) | (status & ~mask);

    if (status & WAKE)
        status |= ACTIVE;
    if (status & RUN) {
        status |= ACTIVE;
        status &= ~DEAD;
    }
    if (status & PAUSE)
        status &= ~ACTIVE;
    if ((ch->regs[DBDMA_STATUS] & RUN) && !(status & RUN)) {
        /* RUN is cleared */
        status &= ~(ACTIVE|DEAD);
    }

    DBDMA_DPRINTF("    status 0x%08x\n", status);

    ch->regs[DBDMA_STATUS] = status;

    if (status & ACTIVE)
        qemu_bh_schedule(dbdma_bh);
    if ((status & FLUSH) && ch->flush)
        ch->flush(&ch->io);
}

static void dbdma_write(void *opaque, target_phys_addr_t addr,
                        uint64_t value, unsigned size)
{
    int channel = addr >> DBDMA_CHANNEL_SHIFT;
    DBDMAState *s = opaque;
    DBDMA_channel *ch = &s->channels[channel];
    int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;

    DBDMA_DPRINTF("writel 0x" TARGET_FMT_plx " <= 0x%08x\n", addr, value);
    DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
                  (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);

    /* cmdptr cannot be modified if channel is RUN or ACTIVE */

    if (reg == DBDMA_CMDPTR_LO &&
        (ch->regs[DBDMA_STATUS] & (RUN | ACTIVE)))
	return;

    ch->regs[reg] = value;

    switch(reg) {
    case DBDMA_CONTROL:
        dbdma_control_write(ch);
        break;
    case DBDMA_CMDPTR_LO:
        /* 16-byte aligned */
        ch->regs[DBDMA_CMDPTR_LO] &= ~0xf;
        dbdma_cmdptr_load(ch);
        break;
    case DBDMA_STATUS:
    case DBDMA_INTR_SEL:
    case DBDMA_BRANCH_SEL:
    case DBDMA_WAIT_SEL:
        /* nothing to do */
        break;
    case DBDMA_XFER_MODE:
    case DBDMA_CMDPTR_HI:
    case DBDMA_DATA2PTR_HI:
    case DBDMA_DATA2PTR_LO:
    case DBDMA_ADDRESS_HI:
    case DBDMA_BRANCH_ADDR_HI:
    case DBDMA_RES1:
    case DBDMA_RES2:
    case DBDMA_RES3:
    case DBDMA_RES4:
        /* unused */
        break;
    }
}

static uint64_t dbdma_read(void *opaque, target_phys_addr_t addr,
                           unsigned size)
{
    uint32_t value;
    int channel = addr >> DBDMA_CHANNEL_SHIFT;
    DBDMAState *s = opaque;
    DBDMA_channel *ch = &s->channels[channel];
    int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;

    value = ch->regs[reg];

    DBDMA_DPRINTF("readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value);
    DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
                  (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);

    switch(reg) {
    case DBDMA_CONTROL:
        value = 0;
        break;
    case DBDMA_STATUS:
    case DBDMA_CMDPTR_LO:
    case DBDMA_INTR_SEL:
    case DBDMA_BRANCH_SEL:
    case DBDMA_WAIT_SEL:
        /* nothing to do */
        break;
    case DBDMA_XFER_MODE:
    case DBDMA_CMDPTR_HI:
    case DBDMA_DATA2PTR_HI:
    case DBDMA_DATA2PTR_LO:
    case DBDMA_ADDRESS_HI:
    case DBDMA_BRANCH_ADDR_HI:
        /* unused */
        value = 0;
        break;
    case DBDMA_RES1:
    case DBDMA_RES2:
    case DBDMA_RES3:
    case DBDMA_RES4:
        /* reserved */
        break;
    }

    return value;
}

static const MemoryRegionOps dbdma_ops = {
    .read = dbdma_read,
    .write = dbdma_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 4,
    },
};

static const VMStateDescription vmstate_dbdma_channel = {
    .name = "dbdma_channel",
    .version_id = 0,
    .minimum_version_id = 0,
    .minimum_version_id_old = 0,
    .fields      = (VMStateField[]) {
        VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_dbdma = {
    .name = "dbdma",
    .version_id = 2,
    .minimum_version_id = 2,
    .minimum_version_id_old = 2,
    .fields      = (VMStateField[]) {
        VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1,
                             vmstate_dbdma_channel, DBDMA_channel),
        VMSTATE_END_OF_LIST()
    }
};

static void dbdma_reset(void *opaque)
{
    DBDMAState *s = opaque;
    int i;

    for (i = 0; i < DBDMA_CHANNELS; i++)
        memset(s->channels[i].regs, 0, DBDMA_SIZE);
}

void* DBDMA_init (MemoryRegion **dbdma_mem)
{
    DBDMAState *s;

    s = qemu_mallocz(sizeof(DBDMAState));

    memory_region_init_io(&s->mem, &dbdma_ops, s, "dbdma", 0x1000);
    *dbdma_mem = &s->mem;
    vmstate_register(NULL, -1, &vmstate_dbdma, s);
    qemu_register_reset(dbdma_reset, s);

    dbdma_bh = qemu_bh_new(DBDMA_run_bh, s);

    return s;
}