aboutsummaryrefslogtreecommitdiff
path: root/hw/m68k/next-cube.c
blob: 9a4a7328f9502fc66d751952576bba86c3f9ba7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
/*
 * NeXT Cube System Driver
 *
 * Copyright (c) 2011 Bryce Lanham
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published
 * by the Free Software Foundation; either version 2 of the License,
 * or (at your option) any later version.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/hwaddr.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "hw/irq.h"
#include "hw/m68k/next-cube.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/scsi/esp.h"
#include "hw/sysbus.h"
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
#include "hw/block/fdc.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "ui/console.h"
#include "target/m68k/cpu.h"

/* #define DEBUG_NEXT */
#ifdef DEBUG_NEXT
#define DPRINTF(fmt, ...) \
    do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif

#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
#define NEXT_MACHINE(obj) OBJECT_CHECK(NeXTState, (obj), TYPE_NEXT_MACHINE)

#define ENTRY       0x0100001e
#define RAM_SIZE    0x4000000
#define ROM_FILE    "Rev_2.5_v66.bin"

typedef struct next_dma {
    uint32_t csr;

    uint32_t saved_next;
    uint32_t saved_limit;
    uint32_t saved_start;
    uint32_t saved_stop;

    uint32_t next;
    uint32_t limit;
    uint32_t start;
    uint32_t stop;

    uint32_t next_initbuf;
    uint32_t size;
} next_dma;

typedef struct {
    MachineState parent;

    uint32_t int_mask;
    uint32_t int_status;

    uint8_t scsi_csr_1;
    uint8_t scsi_csr_2;
    next_dma dma[10];
    qemu_irq *scsi_irq;
    qemu_irq scsi_dma;
    qemu_irq scsi_reset;
    qemu_irq *fd_irq;

    uint32_t scr1;
    uint32_t scr2;

    uint8_t rtc_ram[32];
} NeXTState;

/* Thanks to NeXT forums for this */
/*
static const uint8_t rtc_ram3[32] = {
    0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
    0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
};
*/
static const uint8_t rtc_ram2[32] = {
    0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
    0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
};

#define SCR2_RTCLK 0x2
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))

static void nextscr2_write(NeXTState *s, uint32_t val, int size)
{
    static int led;
    static int phase;
    static uint8_t old_scr2;
    static uint8_t rtc_command;
    static uint8_t rtc_value;
    static uint8_t rtc_status = 0x90;
    static uint8_t rtc_return;
    uint8_t scr2_2;

    if (size == 4) {
        scr2_2 = (val >> 8) & 0xFF;
    } else {
        scr2_2 = val & 0xFF;
    }

    if (val & 0x1) {
        DPRINTF("fault!\n");
        led++;
        if (led == 10) {
            DPRINTF("LED flashing, possible fault!\n");
            led = 0;
        }
    }

    if (scr2_2 & 0x1) {
        /* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
        if (phase == -1) {
            phase = 0;
        }
        /* If we are in going down clock... do something */
        if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
                ((scr2_2 & SCR2_RTCLK) == 0)) {
            if (phase < 8) {
                rtc_command = (rtc_command << 1) |
                              ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
            }
            if (phase >= 8 && phase < 16) {
                rtc_value = (rtc_value << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0);

                /* if we read RAM register, output RT_DATA bit */
                if (rtc_command <= 0x1F) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    if (s->rtc_ram[rtc_command] & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }

                    rtc_return = (rtc_return << 1) |
                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }
                /* read the status 0x30 */
                if (rtc_command == 0x30) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    /* for now status = 0x98 (new rtc + FTU) */
                    if (rtc_status & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }

                    rtc_return = (rtc_return << 1) |
                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }
                /* read the status 0x31 */
                if (rtc_command == 0x31) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    /* for now 0x00 */
                    if (0x00 & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }
                    rtc_return = (rtc_return << 1) |
                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }

                if ((rtc_command >= 0x20) && (rtc_command <= 0x2F)) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    /* for now 0x00 */
                    time_t time_h = time(NULL);
                    struct tm *info = localtime(&time_h);
                    int ret = 0;

                    switch (rtc_command) {
                    case 0x20:
                        ret = SCR2_TOBCD(info->tm_sec);
                        break;
                    case 0x21:
                        ret = SCR2_TOBCD(info->tm_min);
                        break;
                    case 0x22:
                        ret = SCR2_TOBCD(info->tm_hour);
                        break;
                    case 0x24:
                        ret = SCR2_TOBCD(info->tm_mday);
                        break;
                    case 0x25:
                        ret = SCR2_TOBCD((info->tm_mon + 1));
                        break;
                    case 0x26:
                        ret = SCR2_TOBCD((info->tm_year - 100));
                        break;

                    }

                    if (ret & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }
                    rtc_return = (rtc_return << 1) |
                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }

            }

            phase++;
            if (phase == 16) {
                if (rtc_command >= 0x80 && rtc_command <= 0x9F) {
                    s->rtc_ram[rtc_command - 0x80] = rtc_value;
                }
                /* write to x30 register */
                if (rtc_command == 0xB1) {
                    /* clear FTU */
                    if (rtc_value & 0x04) {
                        rtc_status = rtc_status & (~0x18);
                        s->int_status = s->int_status & (~0x04);
                    }
                }
            }
        }
    } else {
        /* else end or abort */
        phase = -1;
        rtc_command = 0;
        rtc_value = 0;
    }
    s->scr2 = val & 0xFFFF00FF;
    s->scr2 |= scr2_2 << 8;
    old_scr2 = scr2_2;
}

static uint32_t mmio_readb(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    case 0xc000:
        return (s->scr1 >> 24) & 0xFF;
    case 0xc001:
        return (s->scr1 >> 16) & 0xFF;
    case 0xc002:
        return (s->scr1 >> 8)  & 0xFF;
    case 0xc003:
        return (s->scr1 >> 0)  & 0xFF;

    case 0xd000:
        return (s->scr2 >> 24) & 0xFF;
    case 0xd001:
        return (s->scr2 >> 16) & 0xFF;
    case 0xd002:
        return (s->scr2 >> 8)  & 0xFF;
    case 0xd003:
        return (s->scr2 >> 0)  & 0xFF;
    case 0x14020:
        DPRINTF("MMIO Read 0x4020\n");
        return 0x7f;

    default:
        DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
        return 0x0;
    }
}

static uint32_t mmio_readw(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    default:
        DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
        return 0x0;
    }
}

static uint32_t mmio_readl(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    case 0x7000:
        /* DPRINTF("Read INT status: %x\n", s->int_status); */
        return s->int_status;

    case 0x7800:
        DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
        return s->int_mask;

    case 0xc000:
        return s->scr1;

    case 0xd000:
        return s->scr2;

    default:
        DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
        return 0x0;
    }
}

static void mmio_writeb(NeXTState *s, hwaddr addr, uint32_t val)
{
    switch (addr) {
    case 0xd003:
        nextscr2_write(s, val, 1);
        break;
    default:
        DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
    }

}

static void mmio_writew(NeXTState *s, hwaddr addr, uint32_t val)
{
    DPRINTF("MMIO Write W\n");
}

static void mmio_writel(NeXTState *s, hwaddr addr, uint32_t val)
{
    switch (addr) {
    case 0x7000:
        DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
        s->int_status = val;
        break;
    case 0x7800:
        DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
        s->int_mask  = val;
        break;
    case 0xc000:
        DPRINTF("SCR1 Write: %x\n", val);
        break;
    case 0xd000:
        nextscr2_write(s, val, 4);
        break;

    default:
        DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
    }
}

static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        return mmio_readb(ns, addr);
    case 2:
        return mmio_readw(ns, addr);
    case 4:
        return mmio_readl(ns, addr);
    default:
        g_assert_not_reached();
    }
}

static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
                         unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        mmio_writeb(ns, addr, value);
        break;
    case 2:
        mmio_writew(ns, addr, value);
        break;
    case 4:
        mmio_writel(ns, addr, value);
        break;
    default:
        g_assert_not_reached();
    }
}

static const MemoryRegionOps mmio_ops = {
    .read = mmio_readfn,
    .write = mmio_writefn,
    .valid.min_access_size = 1,
    .valid.max_access_size = 4,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static uint32_t scr_readb(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    case 0x14108:
        DPRINTF("FD read @ %x\n", (unsigned int)addr);
        return 0x40 | 0x04 | 0x2 | 0x1;
    case 0x14020:
        DPRINTF("SCSI 4020  STATUS READ %X\n", s->scsi_csr_1);
        return s->scsi_csr_1;

    case 0x14021:
        DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
        return 0x40;

    /*
     * These 4 registers are the hardware timer, not sure which register
     * is the latch instead of data, but no problems so far
     */
    case 0x1a000:
        return 0xff & (clock() >> 24);
    case 0x1a001:
        return 0xff & (clock() >> 16);
    case 0x1a002:
        return 0xff & (clock() >> 8);
    case 0x1a003:
        /* Hack: We need to have this change consistently to make it work */
        return 0xFF & clock();

    default:
        DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
        return 0;
    }
}

static uint32_t scr_readw(NeXTState *s, hwaddr addr)
{
    DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
    return 0;
}

static uint32_t scr_readl(NeXTState *s, hwaddr addr)
{
    DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
    return 0;
}

#define SCSICSR_ENABLE  0x01
#define SCSICSR_RESET   0x02  /* reset scsi dma */
#define SCSICSR_FIFOFL  0x04
#define SCSICSR_DMADIR  0x08  /* if set, scsi to mem */
#define SCSICSR_CPUDMA  0x10  /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20  /* if set, interrupt enabled */

static void scr_writeb(NeXTState *s, hwaddr addr, uint32_t value)
{
    switch (addr) {
    case 0x14108:
        DPRINTF("FDCSR Write: %x\n", value);

        if (value == 0x0) {
            /* qemu_irq_raise(s->fd_irq[0]); */
        }
        break;
    case 0x14020: /* SCSI Control Register */
        if (value & SCSICSR_FIFOFL) {
            DPRINTF("SCSICSR FIFO Flush\n");
            /* will have to add another irq to the esp if this is needed */
            /* esp_puflush_fifo(esp_g); */
            /* qemu_irq_pulse(s->scsi_dma); */
        }

        if (value & SCSICSR_ENABLE) {
            DPRINTF("SCSICSR Enable\n");
            /*
             * qemu_irq_raise(s->scsi_dma);
             * s->scsi_csr_1 = 0xc0;
             * s->scsi_csr_1 |= 0x1;
             * qemu_irq_pulse(s->scsi_dma);
             */
        }
        /*
         * else
         *     s->scsi_csr_1 &= ~SCSICSR_ENABLE;
         */

        if (value & SCSICSR_RESET) {
            DPRINTF("SCSICSR Reset\n");
            /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
            /* qemu_irq_raise(s->scsi_reset); */
            /* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */

        }
        if (value & SCSICSR_DMADIR) {
            DPRINTF("SCSICSR DMAdir\n");
        }
        if (value & SCSICSR_CPUDMA) {
            DPRINTF("SCSICSR CPUDMA\n");
            /* qemu_irq_raise(s->scsi_dma); */

            s->int_status |= 0x4000000;
        } else {
            s->int_status &= ~(0x4000000);
        }
        if (value & SCSICSR_INTMASK) {
            DPRINTF("SCSICSR INTMASK\n");
            /*
             * int_mask &= ~0x1000;
             * s->scsi_csr_1 |= value;
             * s->scsi_csr_1 &= ~SCSICSR_INTMASK;
             * if (s->scsi_queued) {
             *     s->scsi_queued = 0;
             *     next_irq(s, NEXT_SCSI_I, level);
             * }
             */
        } else {
            /* int_mask |= 0x1000; */
        }
        if (value & 0x80) {
            /* int_mask |= 0x1000; */
            /* s->scsi_csr_1 |= 0x80; */
        }
        DPRINTF("SCSICSR Write: %x\n", value);
        /* s->scsi_csr_1 = value; */
        return;
    /* Hardware timer latch - not implemented yet */
    case 0x1a000:
    default:
        DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
    }
}

static void scr_writew(NeXTState *s, hwaddr addr, uint32_t value)
{
    DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
}

static void scr_writel(NeXTState *s, hwaddr addr, uint32_t value)
{
    DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
}

static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        return scr_readb(ns, addr);
    case 2:
        return scr_readw(ns, addr);
    case 4:
        return scr_readl(ns, addr);
    default:
        g_assert_not_reached();
    }
}

static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
                        unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        scr_writeb(ns, addr, value);
        break;
    case 2:
        scr_writew(ns, addr, value);
        break;
    case 4:
        scr_writel(ns, addr, value);
        break;
    default:
        g_assert_not_reached();
    }
}

static const MemoryRegionOps scr_ops = {
    .read = scr_readfn,
    .write = scr_writefn,
    .valid.min_access_size = 1,
    .valid.max_access_size = 4,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

#define NEXTDMA_SCSI(x)      (0x10 + x)
#define NEXTDMA_FD(x)        (0x10 + x)
#define NEXTDMA_ENTX(x)      (0x110 + x)
#define NEXTDMA_ENRX(x)      (0x150 + x)
#define NEXTDMA_CSR          0x0
#define NEXTDMA_NEXT         0x4000
#define NEXTDMA_LIMIT        0x4004
#define NEXTDMA_START        0x4008
#define NEXTDMA_STOP         0x400c
#define NEXTDMA_NEXT_INIT    0x4200
#define NEXTDMA_SIZE         0x4204

static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
                       unsigned int size)
{
    NeXTState *next_state = NEXT_MACHINE(opaque);

    switch (addr) {
    case NEXTDMA_ENRX(NEXTDMA_CSR):
        if (value & DMA_DEV2M) {
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
        }

        if (value & DMA_SETENABLE) {
            /* DPRINTF("SCSI DMA ENABLE\n"); */
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
        }
        if (value & DMA_SETSUPDATE) {
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
        }
        if (value & DMA_CLRCOMPLETE) {
            next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
        }

        if (value & DMA_RESET) {
            next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
                                                  DMA_ENABLE | DMA_DEV2M);
        }
        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
        break;
    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
        next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
        break;
    case NEXTDMA_ENRX(NEXTDMA_NEXT):
        next_state->dma[NEXTDMA_ENRX].next = value;
        break;
    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
        next_state->dma[NEXTDMA_ENRX].limit = value;
        break;
    case NEXTDMA_SCSI(NEXTDMA_CSR):
        if (value & DMA_DEV2M) {
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
        }
        if (value & DMA_SETENABLE) {
            /* DPRINTF("SCSI DMA ENABLE\n"); */
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
        }
        if (value & DMA_SETSUPDATE) {
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
        }
        if (value & DMA_CLRCOMPLETE) {
            next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
        }

        if (value & DMA_RESET) {
            next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
                                                  DMA_ENABLE | DMA_DEV2M);
            /* DPRINTF("SCSI DMA RESET\n"); */
        }
        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
        break;

    case NEXTDMA_SCSI(NEXTDMA_NEXT):
        next_state->dma[NEXTDMA_SCSI].next = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
        next_state->dma[NEXTDMA_SCSI].limit = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_START):
        next_state->dma[NEXTDMA_SCSI].start = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_STOP):
        next_state->dma[NEXTDMA_SCSI].stop = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
        next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
        break;

    default:
        DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
    }
}

static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
{
    NeXTState *next_state = NEXT_MACHINE(opaque);

    switch (addr) {
    case NEXTDMA_SCSI(NEXTDMA_CSR):
        DPRINTF("SCSI DMA CSR READ\n");
        return next_state->dma[NEXTDMA_SCSI].csr;
    case NEXTDMA_ENRX(NEXTDMA_CSR):
        return next_state->dma[NEXTDMA_ENRX].csr;
    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
        return next_state->dma[NEXTDMA_ENRX].next_initbuf;
    case NEXTDMA_ENRX(NEXTDMA_NEXT):
        return next_state->dma[NEXTDMA_ENRX].next;
    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
        return next_state->dma[NEXTDMA_ENRX].limit;

    case NEXTDMA_SCSI(NEXTDMA_NEXT):
        return next_state->dma[NEXTDMA_SCSI].next;
    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
        return next_state->dma[NEXTDMA_SCSI].next_initbuf;
    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
        return next_state->dma[NEXTDMA_SCSI].limit;
    case NEXTDMA_SCSI(NEXTDMA_START):
        return next_state->dma[NEXTDMA_SCSI].start;
    case NEXTDMA_SCSI(NEXTDMA_STOP):
        return next_state->dma[NEXTDMA_SCSI].stop;

    default:
        DPRINTF("DMA read @ %x\n", (unsigned int)addr);
        return 0;
    }

    /*
     * once the csr's are done, subtract 0x3FEC from the addr, and that will
     * normalize the upper registers
     */
}

static const MemoryRegionOps dma_ops = {
    .read = dma_readl,
    .write = dma_writel,
    .impl.min_access_size = 4,
    .valid.min_access_size = 4,
    .valid.max_access_size = 4,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

/*
 * TODO: set the shift numbers as values in the enum, so the first switch
 * will not be needed
 */
void next_irq(void *opaque, int number, int level)
{
    M68kCPU *cpu = opaque;
    int shift = 0;
    NeXTState *ns = NEXT_MACHINE(qdev_get_machine());

    /* first switch sets interupt status */
    /* DPRINTF("IRQ %i\n",number); */
    switch (number) {
    /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
    case NEXT_FD_I:
        shift = 7;;
        break;
    case NEXT_KBD_I:
        shift = 3;
        break;
    case NEXT_PWR_I:
        shift = 2;
        break;
    case NEXT_ENRX_I:
        shift = 9;
        break;
    case NEXT_ENTX_I:
        shift = 10;
        break;
    case NEXT_SCSI_I:
        shift = 12;
        break;
    case NEXT_CLK_I:
        shift = 5;
        break;

    /* level 5 - scc (serial) */
    case NEXT_SCC_I:
        shift = 17;
        break;

    /* level 6 - audio etherrx/tx dma */
    case NEXT_ENTX_DMA_I:
        shift = 28;
        break;
    case NEXT_ENRX_DMA_I:
        shift = 27;
        break;
    case NEXT_SCSI_DMA_I:
        shift = 26;
        break;
    case NEXT_SND_I:
        shift = 23;
        break;
    case NEXT_SCC_DMA_I:
        shift = 21;
        break;

    }
    /*
     * this HAS to be wrong, the interrupt handlers in mach and together
     * int_status and int_mask and return if there is a hit
     */
    if (ns->int_mask & (1 << shift)) {
        DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
        /* return; */
    }

    /* second switch triggers the correct interrupt */
    if (level) {
        ns->int_status |= 1 << shift;

        switch (number) {
        /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
        case NEXT_FD_I:
        case NEXT_KBD_I:
        case NEXT_PWR_I:
        case NEXT_ENRX_I:
        case NEXT_ENTX_I:
        case NEXT_SCSI_I:
        case NEXT_CLK_I:
            m68k_set_irq_level(cpu, 3, 27);
            break;

        /* level 5 - scc (serial) */
        case NEXT_SCC_I:
            m68k_set_irq_level(cpu, 5, 29);
            break;

        /* level 6 - audio etherrx/tx dma */
        case NEXT_ENTX_DMA_I:
        case NEXT_ENRX_DMA_I:
        case NEXT_SCSI_DMA_I:
        case NEXT_SND_I:
        case NEXT_SCC_DMA_I:
            m68k_set_irq_level(cpu, 6, 30);
            break;
        }
    } else {
        ns->int_status &= ~(1 << shift);
        cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
    }
}

static void next_serial_irq(void *opaque, int n, int level)
{
    /* DPRINTF("SCC IRQ NUM %i\n",n); */
    if (n) {
        next_irq(opaque, NEXT_SCC_DMA_I, level);
    } else {
        next_irq(opaque, NEXT_SCC_I, level);
    }
}

static void next_escc_init(M68kCPU *cpu)
{
    qemu_irq *ser_irq = qemu_allocate_irqs(next_serial_irq, cpu, 2);
    DeviceState *dev;
    SysBusDevice *s;

    dev = qdev_create(NULL, TYPE_ESCC);
    qdev_prop_set_uint32(dev, "disabled", 0);
    qdev_prop_set_uint32(dev, "frequency", 9600 * 384);
    qdev_prop_set_uint32(dev, "it_shift", 0);
    qdev_prop_set_bit(dev, "bit_swap", true);
    qdev_prop_set_chr(dev, "chrB", serial_hd(1));
    qdev_prop_set_chr(dev, "chrA", serial_hd(0));
    qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
    qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
    qdev_init_nofail(dev);

    s = SYS_BUS_DEVICE(dev);
    sysbus_connect_irq(s, 0, ser_irq[0]);
    sysbus_connect_irq(s, 1,  ser_irq[1]);
    sysbus_mmio_map(s, 0, 0x2118000);
}

static void next_cube_init(MachineState *machine)
{
    M68kCPU *cpu;
    CPUM68KState *env;
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *rom = g_new(MemoryRegion, 1);
    MemoryRegion *mmiomem = g_new(MemoryRegion, 1);
    MemoryRegion *scrmem = g_new(MemoryRegion, 1);
    MemoryRegion *dmamem = g_new(MemoryRegion, 1);
    MemoryRegion *bmapm1 = g_new(MemoryRegion, 1);
    MemoryRegion *bmapm2 = g_new(MemoryRegion, 1);
    MemoryRegion *sysmem = get_system_memory();
    NeXTState *ns = NEXT_MACHINE(machine);
    DeviceState *dev;

    /* Initialize the cpu core */
    cpu = M68K_CPU(cpu_create(machine->cpu_type));
    if (!cpu) {
        error_report("Unable to find m68k CPU definition");
        exit(1);
    }
    env = &cpu->env;

    /* Initialize CPU registers.  */
    env->vbr = 0;
    env->sr  = 0x2700;

    /* Set internal registers to initial values */
    /*     0x0000XX00 << vital bits */
    ns->scr1 = 0x00011102;
    ns->scr2 = 0x00ff0c80;

    /* Load RTC RAM - TODO: provide possibility to load contents from file */
    memcpy(ns->rtc_ram, rtc_ram2, 32);

    /* 64MB RAM starting at 0x04000000  */
    memory_region_allocate_system_memory(ram, NULL, "next.ram", ram_size);
    memory_region_add_subregion(sysmem, 0x04000000, ram);

    /* Framebuffer */
    dev = qdev_create(NULL, TYPE_NEXTFB);
    qdev_init_nofail(dev);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0B000000);

    /* MMIO */
    memory_region_init_io(mmiomem, NULL, &mmio_ops, machine, "next.mmio",
                          0xD0000);
    memory_region_add_subregion(sysmem, 0x02000000, mmiomem);

    /* BMAP memory */
    memory_region_init_ram_shared_nomigrate(bmapm1, NULL, "next.bmapmem", 64,
                                            true, &error_fatal);
    memory_region_add_subregion(sysmem, 0x020c0000, bmapm1);
    /* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
    memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64);
    memory_region_add_subregion(sysmem, 0x820c0000, bmapm2);

    /* BMAP IO - acts as a catch-all for now */
    memory_region_init_io(scrmem, NULL, &scr_ops, machine, "next.scr",
                          0x20000);
    memory_region_add_subregion(sysmem, 0x02100000, scrmem);

    /* KBD */
    dev = qdev_create(NULL, TYPE_NEXTKBD);
    qdev_init_nofail(dev);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0200e000);

    /* Load ROM here */
    if (bios_name == NULL) {
        bios_name = ROM_FILE;
    }
    /* still not sure if the rom should also be mapped at 0x0*/
    memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal);
    memory_region_add_subregion(sysmem, 0x01000000, rom);
    if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
        if (!qtest_enabled()) {
            error_report("Failed to load firmware '%s'.", bios_name);
        }
    } else {
        uint8_t *ptr;
        /* Initial PC is always at offset 4 in firmware binaries */
        ptr = rom_ptr(0x01000004, 4);
        g_assert(ptr != NULL);
        env->pc = ldl_p(ptr);
        if (env->pc >= 0x01020000) {
            error_report("'%s' does not seem to be a valid firmware image.",
                         bios_name);
            exit(1);
        }
    }

    /* Serial */
    next_escc_init(cpu);

    /* TODO: */
    /* Network */
    /* SCSI */

    /* DMA */
    memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000);
    memory_region_add_subregion(sysmem, 0x02000000, dmamem);
}

static void next_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "NeXT Cube";
    mc->init = next_cube_init;
    mc->default_ram_size = RAM_SIZE;
    mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
}

static const TypeInfo next_typeinfo = {
    .name = TYPE_NEXT_MACHINE,
    .parent = TYPE_MACHINE,
    .class_init = next_machine_class_init,
    .instance_size = sizeof(NeXTState),
};

static void next_register_type(void)
{
    type_register_static(&next_typeinfo);
}

type_init(next_register_type)