aboutsummaryrefslogtreecommitdiff
path: root/hw/lsi53c895a.c
blob: 1643a63ee835169ea3d9514ee13db4482bf1166a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
/*
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
 *
 * Copyright (c) 2006 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licensed under the LGPL.
 */

/* ??? Need to check if the {read,write}[wl] routines work properly on
   big-endian targets.  */

#include <assert.h>

#include "hw.h"
#include "pci.h"
#include "scsi.h"
#include "block_int.h"

//#define DEBUG_LSI
//#define DEBUG_LSI_REG

#ifdef DEBUG_LSI
#define DPRINTF(fmt, ...) \
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
#endif

#define LSI_MAX_DEVS 7

#define LSI_SCNTL0_TRG    0x01
#define LSI_SCNTL0_AAP    0x02
#define LSI_SCNTL0_EPC    0x08
#define LSI_SCNTL0_WATN   0x10
#define LSI_SCNTL0_START  0x20

#define LSI_SCNTL1_SST    0x01
#define LSI_SCNTL1_IARB   0x02
#define LSI_SCNTL1_AESP   0x04
#define LSI_SCNTL1_RST    0x08
#define LSI_SCNTL1_CON    0x10
#define LSI_SCNTL1_DHP    0x20
#define LSI_SCNTL1_ADB    0x40
#define LSI_SCNTL1_EXC    0x80

#define LSI_SCNTL2_WSR    0x01
#define LSI_SCNTL2_VUE0   0x02
#define LSI_SCNTL2_VUE1   0x04
#define LSI_SCNTL2_WSS    0x08
#define LSI_SCNTL2_SLPHBEN 0x10
#define LSI_SCNTL2_SLPMD  0x20
#define LSI_SCNTL2_CHM    0x40
#define LSI_SCNTL2_SDU    0x80

#define LSI_ISTAT0_DIP    0x01
#define LSI_ISTAT0_SIP    0x02
#define LSI_ISTAT0_INTF   0x04
#define LSI_ISTAT0_CON    0x08
#define LSI_ISTAT0_SEM    0x10
#define LSI_ISTAT0_SIGP   0x20
#define LSI_ISTAT0_SRST   0x40
#define LSI_ISTAT0_ABRT   0x80

#define LSI_ISTAT1_SI     0x01
#define LSI_ISTAT1_SRUN   0x02
#define LSI_ISTAT1_FLSH   0x04

#define LSI_SSTAT0_SDP0   0x01
#define LSI_SSTAT0_RST    0x02
#define LSI_SSTAT0_WOA    0x04
#define LSI_SSTAT0_LOA    0x08
#define LSI_SSTAT0_AIP    0x10
#define LSI_SSTAT0_OLF    0x20
#define LSI_SSTAT0_ORF    0x40
#define LSI_SSTAT0_ILF    0x80

#define LSI_SIST0_PAR     0x01
#define LSI_SIST0_RST     0x02
#define LSI_SIST0_UDC     0x04
#define LSI_SIST0_SGE     0x08
#define LSI_SIST0_RSL     0x10
#define LSI_SIST0_SEL     0x20
#define LSI_SIST0_CMP     0x40
#define LSI_SIST0_MA      0x80

#define LSI_SIST1_HTH     0x01
#define LSI_SIST1_GEN     0x02
#define LSI_SIST1_STO     0x04
#define LSI_SIST1_SBMC    0x10

#define LSI_SOCL_IO       0x01
#define LSI_SOCL_CD       0x02
#define LSI_SOCL_MSG      0x04
#define LSI_SOCL_ATN      0x08
#define LSI_SOCL_SEL      0x10
#define LSI_SOCL_BSY      0x20
#define LSI_SOCL_ACK      0x40
#define LSI_SOCL_REQ      0x80

#define LSI_DSTAT_IID     0x01
#define LSI_DSTAT_SIR     0x04
#define LSI_DSTAT_SSI     0x08
#define LSI_DSTAT_ABRT    0x10
#define LSI_DSTAT_BF      0x20
#define LSI_DSTAT_MDPE    0x40
#define LSI_DSTAT_DFE     0x80

#define LSI_DCNTL_COM     0x01
#define LSI_DCNTL_IRQD    0x02
#define LSI_DCNTL_STD     0x04
#define LSI_DCNTL_IRQM    0x08
#define LSI_DCNTL_SSM     0x10
#define LSI_DCNTL_PFEN    0x20
#define LSI_DCNTL_PFF     0x40
#define LSI_DCNTL_CLSE    0x80

#define LSI_DMODE_MAN     0x01
#define LSI_DMODE_BOF     0x02
#define LSI_DMODE_ERMP    0x04
#define LSI_DMODE_ERL     0x08
#define LSI_DMODE_DIOM    0x10
#define LSI_DMODE_SIOM    0x20

#define LSI_CTEST2_DACK   0x01
#define LSI_CTEST2_DREQ   0x02
#define LSI_CTEST2_TEOP   0x04
#define LSI_CTEST2_PCICIE 0x08
#define LSI_CTEST2_CM     0x10
#define LSI_CTEST2_CIO    0x20
#define LSI_CTEST2_SIGP   0x40
#define LSI_CTEST2_DDIR   0x80

#define LSI_CTEST5_BL2    0x04
#define LSI_CTEST5_DDIR   0x08
#define LSI_CTEST5_MASR   0x10
#define LSI_CTEST5_DFSN   0x20
#define LSI_CTEST5_BBCK   0x40
#define LSI_CTEST5_ADCK   0x80

#define LSI_CCNTL0_DILS   0x01
#define LSI_CCNTL0_DISFC  0x10
#define LSI_CCNTL0_ENNDJ  0x20
#define LSI_CCNTL0_PMJCTL 0x40
#define LSI_CCNTL0_ENPMJ  0x80

#define LSI_CCNTL1_EN64DBMV  0x01
#define LSI_CCNTL1_EN64TIBMV 0x02
#define LSI_CCNTL1_64TIMOD   0x04
#define LSI_CCNTL1_DDAC      0x08
#define LSI_CCNTL1_ZMOD      0x80

/* Enable Response to Reselection */
#define LSI_SCID_RRE      0x60

#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)

#define PHASE_DO          0
#define PHASE_DI          1
#define PHASE_CMD         2
#define PHASE_ST          3
#define PHASE_MO          6
#define PHASE_MI          7
#define PHASE_MASK        7

/* Maximum length of MSG IN data.  */
#define LSI_MAX_MSGIN_LEN 8

/* Flag set if this is a tagged command.  */
#define LSI_TAG_VALID     (1 << 16)

typedef struct lsi_request {
    SCSIRequest *req;
    uint32_t tag;
    uint32_t dma_len;
    uint8_t *dma_buf;
    uint32_t pending;
    int out;
    QTAILQ_ENTRY(lsi_request) next;
} lsi_request;

typedef struct {
    PCIDevice dev;
    MemoryRegion mmio_io;
    MemoryRegion ram_io;
    MemoryRegion io_io;

    int carry; /* ??? Should this be an a visible register somewhere?  */
    int status;
    /* Action to take at the end of a MSG IN phase.
       0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
    int msg_action;
    int msg_len;
    uint8_t msg[LSI_MAX_MSGIN_LEN];
    /* 0 if SCRIPTS are running or stopped.
     * 1 if a Wait Reselect instruction has been issued.
     * 2 if processing DMA from lsi_execute_script.
     * 3 if a DMA operation is in progress.  */
    int waiting;
    SCSIBus bus;
    int current_lun;
    /* The tag is a combination of the device ID and the SCSI tag.  */
    uint32_t select_tag;
    int command_complete;
    QTAILQ_HEAD(, lsi_request) queue;
    lsi_request *current;

    uint32_t dsa;
    uint32_t temp;
    uint32_t dnad;
    uint32_t dbc;
    uint8_t istat0;
    uint8_t istat1;
    uint8_t dcmd;
    uint8_t dstat;
    uint8_t dien;
    uint8_t sist0;
    uint8_t sist1;
    uint8_t sien0;
    uint8_t sien1;
    uint8_t mbox0;
    uint8_t mbox1;
    uint8_t dfifo;
    uint8_t ctest2;
    uint8_t ctest3;
    uint8_t ctest4;
    uint8_t ctest5;
    uint8_t ccntl0;
    uint8_t ccntl1;
    uint32_t dsp;
    uint32_t dsps;
    uint8_t dmode;
    uint8_t dcntl;
    uint8_t scntl0;
    uint8_t scntl1;
    uint8_t scntl2;
    uint8_t scntl3;
    uint8_t sstat0;
    uint8_t sstat1;
    uint8_t scid;
    uint8_t sxfer;
    uint8_t socl;
    uint8_t sdid;
    uint8_t ssid;
    uint8_t sfbr;
    uint8_t stest1;
    uint8_t stest2;
    uint8_t stest3;
    uint8_t sidl;
    uint8_t stime0;
    uint8_t respid0;
    uint8_t respid1;
    uint32_t mmrs;
    uint32_t mmws;
    uint32_t sfs;
    uint32_t drs;
    uint32_t sbms;
    uint32_t dbms;
    uint32_t dnad64;
    uint32_t pmjad1;
    uint32_t pmjad2;
    uint32_t rbc;
    uint32_t ua;
    uint32_t ia;
    uint32_t sbc;
    uint32_t csbc;
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
    uint8_t sbr;

    /* Script ram is stored as 32-bit words in host byteorder.  */
    uint32_t script_ram[2048];
} LSIState;

static inline int lsi_irq_on_rsl(LSIState *s)
{
    return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
}

static void lsi_soft_reset(LSIState *s)
{
    lsi_request *p;

    DPRINTF("Reset\n");
    s->carry = 0;

    s->msg_action = 0;
    s->msg_len = 0;
    s->waiting = 0;
    s->dsa = 0;
    s->dnad = 0;
    s->dbc = 0;
    s->temp = 0;
    memset(s->scratch, 0, sizeof(s->scratch));
    s->istat0 = 0;
    s->istat1 = 0;
    s->dcmd = 0x40;
    s->dstat = LSI_DSTAT_DFE;
    s->dien = 0;
    s->sist0 = 0;
    s->sist1 = 0;
    s->sien0 = 0;
    s->sien1 = 0;
    s->mbox0 = 0;
    s->mbox1 = 0;
    s->dfifo = 0;
    s->ctest2 = LSI_CTEST2_DACK;
    s->ctest3 = 0;
    s->ctest4 = 0;
    s->ctest5 = 0;
    s->ccntl0 = 0;
    s->ccntl1 = 0;
    s->dsp = 0;
    s->dsps = 0;
    s->dmode = 0;
    s->dcntl = 0;
    s->scntl0 = 0xc0;
    s->scntl1 = 0;
    s->scntl2 = 0;
    s->scntl3 = 0;
    s->sstat0 = 0;
    s->sstat1 = 0;
    s->scid = 7;
    s->sxfer = 0;
    s->socl = 0;
    s->sdid = 0;
    s->ssid = 0;
    s->stest1 = 0;
    s->stest2 = 0;
    s->stest3 = 0;
    s->sidl = 0;
    s->stime0 = 0;
    s->respid0 = 0x80;
    s->respid1 = 0;
    s->mmrs = 0;
    s->mmws = 0;
    s->sfs = 0;
    s->drs = 0;
    s->sbms = 0;
    s->dbms = 0;
    s->dnad64 = 0;
    s->pmjad1 = 0;
    s->pmjad2 = 0;
    s->rbc = 0;
    s->ua = 0;
    s->ia = 0;
    s->sbc = 0;
    s->csbc = 0;
    s->sbr = 0;
    while (!QTAILQ_EMPTY(&s->queue)) {
        p = QTAILQ_FIRST(&s->queue);
        QTAILQ_REMOVE(&s->queue, p, next);
        g_free(p);
    }
    if (s->current) {
        g_free(s->current);
        s->current = NULL;
    }
}

static int lsi_dma_40bit(LSIState *s)
{
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
        return 1;
    return 0;
}

static int lsi_dma_ti64bit(LSIState *s)
{
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
        return 1;
    return 0;
}

static int lsi_dma_64bit(LSIState *s)
{
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
        return 1;
    return 0;
}

static uint8_t lsi_reg_readb(LSIState *s, int offset);
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
static void lsi_execute_script(LSIState *s);
static void lsi_reselect(LSIState *s, lsi_request *p);

static inline uint32_t read_dword(LSIState *s, uint32_t addr)
{
    uint32_t buf;

    /* XXX: an optimization here used to fast-path the read from scripts
     * memory.  But that bypasses any iommu.
     */
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
    return cpu_to_le32(buf);
}

static void lsi_stop_script(LSIState *s)
{
    s->istat1 &= ~LSI_ISTAT1_SRUN;
}

static void lsi_update_irq(LSIState *s)
{
    int level;
    static int last_level;
    lsi_request *p;

    /* It's unclear whether the DIP/SIP bits should be cleared when the
       Interrupt Status Registers are cleared or when istat0 is read.
       We currently do the formwer, which seems to work.  */
    level = 0;
    if (s->dstat) {
        if (s->dstat & s->dien)
            level = 1;
        s->istat0 |= LSI_ISTAT0_DIP;
    } else {
        s->istat0 &= ~LSI_ISTAT0_DIP;
    }

    if (s->sist0 || s->sist1) {
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
            level = 1;
        s->istat0 |= LSI_ISTAT0_SIP;
    } else {
        s->istat0 &= ~LSI_ISTAT0_SIP;
    }
    if (s->istat0 & LSI_ISTAT0_INTF)
        level = 1;

    if (level != last_level) {
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
                level, s->dstat, s->sist1, s->sist0);
        last_level = level;
    }
    qemu_set_irq(s->dev.irq[0], level);

    if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
        DPRINTF("Handled IRQs & disconnected, looking for pending "
                "processes\n");
        QTAILQ_FOREACH(p, &s->queue, next) {
            if (p->pending) {
                lsi_reselect(s, p);
                break;
            }
        }
    }
}

/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
{
    uint32_t mask0;
    uint32_t mask1;

    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
            stat1, stat0, s->sist1, s->sist0);
    s->sist0 |= stat0;
    s->sist1 |= stat1;
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
       we don't stop processing when raising STO.  Instead continue
       execution and stop at the next insn that accesses the SCSI bus.  */
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
    mask1 &= ~LSI_SIST1_STO;
    if (s->sist0 & mask0 || s->sist1 & mask1) {
        lsi_stop_script(s);
    }
    lsi_update_irq(s);
}

/* Stop SCRIPTS execution and raise a DMA interrupt.  */
static void lsi_script_dma_interrupt(LSIState *s, int stat)
{
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
    s->dstat |= stat;
    lsi_update_irq(s);
    lsi_stop_script(s);
}

static inline void lsi_set_phase(LSIState *s, int phase)
{
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
}

static void lsi_bad_phase(LSIState *s, int out, int new_phase)
{
    /* Trigger a phase mismatch.  */
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
            s->dsp = out ? s->pmjad1 : s->pmjad2;
        } else {
            s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
        }
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
    } else {
        DPRINTF("Phase mismatch interrupt\n");
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
        lsi_stop_script(s);
    }
    lsi_set_phase(s, new_phase);
}


/* Resume SCRIPTS execution after a DMA operation.  */
static void lsi_resume_script(LSIState *s)
{
    if (s->waiting != 2) {
        s->waiting = 0;
        lsi_execute_script(s);
    } else {
        s->waiting = 0;
    }
}

static void lsi_disconnect(LSIState *s)
{
    s->scntl1 &= ~LSI_SCNTL1_CON;
    s->sstat1 &= ~PHASE_MASK;
}

static void lsi_bad_selection(LSIState *s, uint32_t id)
{
    DPRINTF("Selected absent target %d\n", id);
    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
    lsi_disconnect(s);
}

/* Initiate a SCSI layer data transfer.  */
static void lsi_do_dma(LSIState *s, int out)
{
    uint32_t count, id;
    target_phys_addr_t addr;
    SCSIDevice *dev;

    assert(s->current);
    if (!s->current->dma_len) {
        /* Wait until data is available.  */
        DPRINTF("DMA no data available\n");
        return;
    }

    id = (s->current->tag >> 8) & 0xf;
    dev = s->bus.devs[id];
    if (!dev) {
        lsi_bad_selection(s, id);
        return;
    }

    count = s->dbc;
    if (count > s->current->dma_len)
        count = s->current->dma_len;

    addr = s->dnad;
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
        addr |= ((uint64_t)s->dnad64 << 32);
    else if (s->dbms)
        addr |= ((uint64_t)s->dbms << 32);
    else if (s->sbms)
        addr |= ((uint64_t)s->sbms << 32);

    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
    s->csbc += count;
    s->dnad += count;
    s->dbc -= count;
     if (s->current->dma_buf == NULL) {
        s->current->dma_buf = scsi_req_get_buf(s->current->req);
    }
    /* ??? Set SFBR to first data byte.  */
    if (out) {
        cpu_physical_memory_read(addr, s->current->dma_buf, count);
    } else {
        cpu_physical_memory_write(addr, s->current->dma_buf, count);
    }
    s->current->dma_len -= count;
    if (s->current->dma_len == 0) {
        s->current->dma_buf = NULL;
        scsi_req_continue(s->current->req);
    } else {
        s->current->dma_buf += count;
        lsi_resume_script(s);
    }
}


/* Add a command to the queue.  */
static void lsi_queue_command(LSIState *s)
{
    lsi_request *p = s->current;

    DPRINTF("Queueing tag=0x%x\n", p->tag);
    assert(s->current != NULL);
    assert(s->current->dma_len == 0);
    QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
    s->current = NULL;

    p->pending = 0;
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
}

/* Queue a byte for a MSG IN phase.  */
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
{
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
        BADF("MSG IN data too long\n");
    } else {
        DPRINTF("MSG IN 0x%02x\n", data);
        s->msg[s->msg_len++] = data;
    }
}

/* Perform reselection to continue a command.  */
static void lsi_reselect(LSIState *s, lsi_request *p)
{
    int id;

    assert(s->current == NULL);
    QTAILQ_REMOVE(&s->queue, p, next);
    s->current = p;

    id = (p->tag >> 8) & 0xf;
    s->ssid = id | 0x80;
    /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
    if (!(s->dcntl & LSI_DCNTL_COM)) {
        s->sfbr = 1 << (id & 0x7);
    }
    DPRINTF("Reselected target %d\n", id);
    s->scntl1 |= LSI_SCNTL1_CON;
    lsi_set_phase(s, PHASE_MI);
    s->msg_action = p->out ? 2 : 3;
    s->current->dma_len = p->pending;
    lsi_add_msg_byte(s, 0x80);
    if (s->current->tag & LSI_TAG_VALID) {
        lsi_add_msg_byte(s, 0x20);
        lsi_add_msg_byte(s, p->tag & 0xff);
    }

    if (lsi_irq_on_rsl(s)) {
        lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
    }
}

static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag)
{
    lsi_request *p;

    QTAILQ_FOREACH(p, &s->queue, next) {
        if (p->tag == tag) {
            return p;
        }
    }

    return NULL;
}

static void lsi_request_cancelled(SCSIRequest *req)
{
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
    lsi_request *p = req->hba_private;

    if (s->current && req == s->current->req) {
        scsi_req_unref(req);
        g_free(s->current);
        s->current = NULL;
        return;
    }

    if (p) {
        QTAILQ_REMOVE(&s->queue, p, next);
        scsi_req_unref(req);
        g_free(p);
    }
}

/* Record that data is available for a queued command.  Returns zero if
   the device was reselected, nonzero if the IO is deferred.  */
static int lsi_queue_req(LSIState *s, SCSIRequest *req, uint32_t len)
{
    lsi_request *p = req->hba_private;

    if (p->pending) {
        BADF("Multiple IO pending for request %p\n", p);
    }
    p->pending = len;
    /* Reselect if waiting for it, or if reselection triggers an IRQ
       and the bus is free.
       Since no interrupt stacking is implemented in the emulation, it
       is also required that there are no pending interrupts waiting
       for service from the device driver. */
    if (s->waiting == 1 ||
        (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
         !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
        /* Reselect device.  */
        lsi_reselect(s, p);
        return 0;
    } else {
        DPRINTF("Queueing IO tag=0x%x\n", tag);
        p->pending = len;
        return 1;
    }
}

 /* Callback to indicate that the SCSI layer has completed a command.  */
static void lsi_command_complete(SCSIRequest *req, uint32_t status)
{
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
    int out;

    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
    DPRINTF("Command complete status=%d\n", (int)status);
    s->status = status;
    s->command_complete = 2;
    if (s->waiting && s->dbc != 0) {
        /* Raise phase mismatch for short transfers.  */
        lsi_bad_phase(s, out, PHASE_ST);
    } else {
        lsi_set_phase(s, PHASE_ST);
    }

    if (s->current && req == s->current->req) {
        scsi_req_unref(s->current->req);
        g_free(s->current);
        s->current = NULL;
    }
    lsi_resume_script(s);
}

 /* Callback to indicate that the SCSI layer has completed a transfer.  */
static void lsi_transfer_data(SCSIRequest *req, uint32_t len)
{
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
    int out;

    if (s->waiting == 1 || !s->current || req->hba_private != s->current ||
        (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
        if (lsi_queue_req(s, req, len)) {
            return;
        }
    }

    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;

    /* host adapter (re)connected */
    DPRINTF("Data ready tag=0x%x len=%d\n", req->tag, len);
    s->current->dma_len = len;
    s->command_complete = 1;
    if (s->waiting) {
        if (s->waiting == 1 || s->dbc == 0) {
            lsi_resume_script(s);
        } else {
            lsi_do_dma(s, out);
        }
    }
}

static void lsi_do_command(LSIState *s)
{
    SCSIDevice *dev;
    uint8_t buf[16];
    uint32_t id;
    int n;

    DPRINTF("Send command len=%d\n", s->dbc);
    if (s->dbc > 16)
        s->dbc = 16;
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
    s->sfbr = buf[0];
    s->command_complete = 0;

    id = (s->select_tag >> 8) & 0xf;
    dev = s->bus.devs[id];
    if (!dev) {
        lsi_bad_selection(s, id);
        return;
    }

    assert(s->current == NULL);
    s->current = g_malloc0(sizeof(lsi_request));
    s->current->tag = s->select_tag;
    s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun, buf,
                                   s->current);

    n = scsi_req_enqueue(s->current->req);
    if (n) {
        if (n > 0) {
            lsi_set_phase(s, PHASE_DI);
        } else if (n < 0) {
            lsi_set_phase(s, PHASE_DO);
        }
        scsi_req_continue(s->current->req);
    }
    if (!s->command_complete) {
        if (n) {
            /* Command did not complete immediately so disconnect.  */
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
            /* wait data */
            lsi_set_phase(s, PHASE_MI);
            s->msg_action = 1;
            lsi_queue_command(s);
        } else {
            /* wait command complete */
            lsi_set_phase(s, PHASE_DI);
        }
    }
}

static void lsi_do_status(LSIState *s)
{
    uint8_t status;
    DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status);
    if (s->dbc != 1)
        BADF("Bad Status move\n");
    s->dbc = 1;
    status = s->status;
    s->sfbr = status;
    cpu_physical_memory_write(s->dnad, &status, 1);
    lsi_set_phase(s, PHASE_MI);
    s->msg_action = 1;
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
}

static void lsi_do_msgin(LSIState *s)
{
    int len;
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
    s->sfbr = s->msg[0];
    len = s->msg_len;
    if (len > s->dbc)
        len = s->dbc;
    cpu_physical_memory_write(s->dnad, s->msg, len);
    /* Linux drivers rely on the last byte being in the SIDL.  */
    s->sidl = s->msg[len - 1];
    s->msg_len -= len;
    if (s->msg_len) {
        memmove(s->msg, s->msg + len, s->msg_len);
    } else {
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
           switch to PHASE_MO.  */
        switch (s->msg_action) {
        case 0:
            lsi_set_phase(s, PHASE_CMD);
            break;
        case 1:
            lsi_disconnect(s);
            break;
        case 2:
            lsi_set_phase(s, PHASE_DO);
            break;
        case 3:
            lsi_set_phase(s, PHASE_DI);
            break;
        default:
            abort();
        }
    }
}

/* Read the next byte during a MSGOUT phase.  */
static uint8_t lsi_get_msgbyte(LSIState *s)
{
    uint8_t data;
    cpu_physical_memory_read(s->dnad, &data, 1);
    s->dnad++;
    s->dbc--;
    return data;
}

/* Skip the next n bytes during a MSGOUT phase. */
static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
{
    s->dnad += n;
    s->dbc  -= n;
}

static void lsi_do_msgout(LSIState *s)
{
    uint8_t msg;
    int len;
    uint32_t current_tag;
    lsi_request *current_req, *p, *p_next;
    int id;

    if (s->current) {
        current_tag = s->current->tag;
        current_req = s->current;
    } else {
        current_tag = s->select_tag;
        current_req = lsi_find_by_tag(s, current_tag);
    }
    id = (current_tag >> 8) & 0xf;

    DPRINTF("MSG out len=%d\n", s->dbc);
    while (s->dbc) {
        msg = lsi_get_msgbyte(s);
        s->sfbr = msg;

        switch (msg) {
        case 0x04:
            DPRINTF("MSG: Disconnect\n");
            lsi_disconnect(s);
            break;
        case 0x08:
            DPRINTF("MSG: No Operation\n");
            lsi_set_phase(s, PHASE_CMD);
            break;
        case 0x01:
            len = lsi_get_msgbyte(s);
            msg = lsi_get_msgbyte(s);
            (void)len; /* avoid a warning about unused variable*/
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
            switch (msg) {
            case 1:
                DPRINTF("SDTR (ignored)\n");
                lsi_skip_msgbytes(s, 2);
                break;
            case 3:
                DPRINTF("WDTR (ignored)\n");
                lsi_skip_msgbytes(s, 1);
                break;
            default:
                goto bad;
            }
            break;
        case 0x20: /* SIMPLE queue */
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
            DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
            break;
        case 0x21: /* HEAD of queue */
            BADF("HEAD queue not implemented\n");
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
            break;
        case 0x22: /* ORDERED queue */
            BADF("ORDERED queue not implemented\n");
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
            break;
        case 0x0d:
            /* The ABORT TAG message clears the current I/O process only. */
            DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag);
            if (current_req) {
                scsi_req_cancel(current_req->req);
            }
            lsi_disconnect(s);
            break;
        case 0x06:
        case 0x0e:
        case 0x0c:
            /* The ABORT message clears all I/O processes for the selecting
               initiator on the specified logical unit of the target. */
            if (msg == 0x06) {
                DPRINTF("MSG: ABORT tag=0x%x\n", current_tag);
            }
            /* The CLEAR QUEUE message clears all I/O processes for all
               initiators on the specified logical unit of the target. */
            if (msg == 0x0e) {
                DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag);
            }
            /* The BUS DEVICE RESET message clears all I/O processes for all
               initiators on all logical units of the target. */
            if (msg == 0x0c) {
                DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag);
            }

            /* clear the current I/O process */
            if (s->current) {
                scsi_req_cancel(s->current->req);
            }

            /* As the current implemented devices scsi_disk and scsi_generic
               only support one LUN, we don't need to keep track of LUNs.
               Clearing I/O processes for other initiators could be possible
               for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
               device, but this is currently not implemented (and seems not
               to be really necessary). So let's simply clear all queued
               commands for the current device: */
            id = current_tag & 0x0000ff00;
            QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
                if ((p->tag & 0x0000ff00) == id) {
                    scsi_req_cancel(p->req);
                }
            }

            lsi_disconnect(s);
            break;
        default:
            if ((msg & 0x80) == 0) {
                goto bad;
            }
            s->current_lun = msg & 7;
            DPRINTF("Select LUN %d\n", s->current_lun);
            lsi_set_phase(s, PHASE_CMD);
            break;
        }
    }
    return;
bad:
    BADF("Unimplemented message 0x%02x\n", msg);
    lsi_set_phase(s, PHASE_MI);
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
    s->msg_action = 0;
}

/* Sign extend a 24-bit value.  */
static inline int32_t sxt24(int32_t n)
{
    return (n << 8) >> 8;
}

#define LSI_BUF_SIZE 4096
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
{
    int n;
    uint8_t buf[LSI_BUF_SIZE];

    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
    while (count) {
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
        cpu_physical_memory_read(src, buf, n);
        cpu_physical_memory_write(dest, buf, n);
        src += n;
        dest += n;
        count -= n;
    }
}

static void lsi_wait_reselect(LSIState *s)
{
    lsi_request *p;

    DPRINTF("Wait Reselect\n");

    QTAILQ_FOREACH(p, &s->queue, next) {
        if (p->pending) {
            lsi_reselect(s, p);
            break;
        }
    }
    if (s->current == NULL) {
        s->waiting = 1;
    }
}

static void lsi_execute_script(LSIState *s)
{
    uint32_t insn;
    uint32_t addr, addr_high;
    int opcode;
    int insn_processed = 0;

    s->istat1 |= LSI_ISTAT1_SRUN;
again:
    insn_processed++;
    insn = read_dword(s, s->dsp);
    if (!insn) {
        /* If we receive an empty opcode increment the DSP by 4 bytes
           instead of 8 and execute the next opcode at that location */
        s->dsp += 4;
        goto again;
    }
    addr = read_dword(s, s->dsp + 4);
    addr_high = 0;
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
    s->dsps = addr;
    s->dcmd = insn >> 24;
    s->dsp += 8;
    switch (insn >> 30) {
    case 0: /* Block move.  */
        if (s->sist1 & LSI_SIST1_STO) {
            DPRINTF("Delayed select timeout\n");
            lsi_stop_script(s);
            break;
        }
        s->dbc = insn & 0xffffff;
        s->rbc = s->dbc;
        /* ??? Set ESA.  */
        s->ia = s->dsp - 8;
        if (insn & (1 << 29)) {
            /* Indirect addressing.  */
            addr = read_dword(s, addr);
        } else if (insn & (1 << 28)) {
            uint32_t buf[2];
            int32_t offset;
            /* Table indirect addressing.  */

            /* 32-bit Table indirect */
            offset = sxt24(addr);
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
            /* byte count is stored in bits 0:23 only */
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
            s->rbc = s->dbc;
            addr = cpu_to_le32(buf[1]);

            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
             * table, bits [31:24] */
            if (lsi_dma_40bit(s))
                addr_high = cpu_to_le32(buf[0]) >> 24;
            else if (lsi_dma_ti64bit(s)) {
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
                switch (selector) {
                case 0 ... 0x0f:
                    /* offset index into scratch registers since
                     * TI64 mode can use registers C to R */
                    addr_high = s->scratch[2 + selector];
                    break;
                case 0x10:
                    addr_high = s->mmrs;
                    break;
                case 0x11:
                    addr_high = s->mmws;
                    break;
                case 0x12:
                    addr_high = s->sfs;
                    break;
                case 0x13:
                    addr_high = s->drs;
                    break;
                case 0x14:
                    addr_high = s->sbms;
                    break;
                case 0x15:
                    addr_high = s->dbms;
                    break;
                default:
                    BADF("Illegal selector specified (0x%x > 0x15)"
                         " for 64-bit DMA block move", selector);
                    break;
                }
            }
        } else if (lsi_dma_64bit(s)) {
            /* fetch a 3rd dword if 64-bit direct move is enabled and
               only if we're not doing table indirect or indirect addressing */
            s->dbms = read_dword(s, s->dsp);
            s->dsp += 4;
            s->ia = s->dsp - 12;
        }
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
            DPRINTF("Wrong phase got %d expected %d\n",
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
            break;
        }
        s->dnad = addr;
        s->dnad64 = addr_high;
        switch (s->sstat1 & 0x7) {
        case PHASE_DO:
            s->waiting = 2;
            lsi_do_dma(s, 1);
            if (s->waiting)
                s->waiting = 3;
            break;
        case PHASE_DI:
            s->waiting = 2;
            lsi_do_dma(s, 0);
            if (s->waiting)
                s->waiting = 3;
            break;
        case PHASE_CMD:
            lsi_do_command(s);
            break;
        case PHASE_ST:
            lsi_do_status(s);
            break;
        case PHASE_MO:
            lsi_do_msgout(s);
            break;
        case PHASE_MI:
            lsi_do_msgin(s);
            break;
        default:
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
            exit(1);
        }
        s->dfifo = s->dbc & 0xff;
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
        s->sbc = s->dbc;
        s->rbc -= s->dbc;
        s->ua = addr + s->dbc;
        break;

    case 1: /* IO or Read/Write instruction.  */
        opcode = (insn >> 27) & 7;
        if (opcode < 5) {
            uint32_t id;

            if (insn & (1 << 25)) {
                id = read_dword(s, s->dsa + sxt24(insn));
            } else {
                id = insn;
            }
            id = (id >> 16) & 0xf;
            if (insn & (1 << 26)) {
                addr = s->dsp + sxt24(addr);
            }
            s->dnad = addr;
            switch (opcode) {
            case 0: /* Select */
                s->sdid = id;
                if (s->scntl1 & LSI_SCNTL1_CON) {
                    DPRINTF("Already reselected, jumping to alternative address\n");
                    s->dsp = s->dnad;
                    break;
                }
                s->sstat0 |= LSI_SSTAT0_WOA;
                s->scntl1 &= ~LSI_SCNTL1_IARB;
                if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
                    lsi_bad_selection(s, id);
                    break;
                }
                DPRINTF("Selected target %d%s\n",
                        id, insn & (1 << 3) ? " ATN" : "");
                /* ??? Linux drivers compain when this is set.  Maybe
                   it only applies in low-level mode (unimplemented).
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
                s->select_tag = id << 8;
                s->scntl1 |= LSI_SCNTL1_CON;
                if (insn & (1 << 3)) {
                    s->socl |= LSI_SOCL_ATN;
                }
                lsi_set_phase(s, PHASE_MO);
                break;
            case 1: /* Disconnect */
                DPRINTF("Wait Disconnect\n");
                s->scntl1 &= ~LSI_SCNTL1_CON;
                break;
            case 2: /* Wait Reselect */
                if (!lsi_irq_on_rsl(s)) {
                    lsi_wait_reselect(s);
                }
                break;
            case 3: /* Set */
                DPRINTF("Set%s%s%s%s\n",
                        insn & (1 << 3) ? " ATN" : "",
                        insn & (1 << 6) ? " ACK" : "",
                        insn & (1 << 9) ? " TM" : "",
                        insn & (1 << 10) ? " CC" : "");
                if (insn & (1 << 3)) {
                    s->socl |= LSI_SOCL_ATN;
                    lsi_set_phase(s, PHASE_MO);
                }
                if (insn & (1 << 9)) {
                    BADF("Target mode not implemented\n");
                    exit(1);
                }
                if (insn & (1 << 10))
                    s->carry = 1;
                break;
            case 4: /* Clear */
                DPRINTF("Clear%s%s%s%s\n",
                        insn & (1 << 3) ? " ATN" : "",
                        insn & (1 << 6) ? " ACK" : "",
                        insn & (1 << 9) ? " TM" : "",
                        insn & (1 << 10) ? " CC" : "");
                if (insn & (1 << 3)) {
                    s->socl &= ~LSI_SOCL_ATN;
                }
                if (insn & (1 << 10))
                    s->carry = 0;
                break;
            }
        } else {
            uint8_t op0;
            uint8_t op1;
            uint8_t data8;
            int reg;
            int operator;
#ifdef DEBUG_LSI
            static const char *opcode_names[3] =
                {"Write", "Read", "Read-Modify-Write"};
            static const char *operator_names[8] =
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
#endif

            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
            data8 = (insn >> 8) & 0xff;
            opcode = (insn >> 27) & 7;
            operator = (insn >> 24) & 7;
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
                    opcode_names[opcode - 5], reg,
                    operator_names[operator], data8, s->sfbr,
                    (insn & (1 << 23)) ? " SFBR" : "");
            op0 = op1 = 0;
            switch (opcode) {
            case 5: /* From SFBR */
                op0 = s->sfbr;
                op1 = data8;
                break;
            case 6: /* To SFBR */
                if (operator)
                    op0 = lsi_reg_readb(s, reg);
                op1 = data8;
                break;
            case 7: /* Read-modify-write */
                if (operator)
                    op0 = lsi_reg_readb(s, reg);
                if (insn & (1 << 23)) {
                    op1 = s->sfbr;
                } else {
                    op1 = data8;
                }
                break;
            }

            switch (operator) {
            case 0: /* move */
                op0 = op1;
                break;
            case 1: /* Shift left */
                op1 = op0 >> 7;
                op0 = (op0 << 1) | s->carry;
                s->carry = op1;
                break;
            case 2: /* OR */
                op0 |= op1;
                break;
            case 3: /* XOR */
                op0 ^= op1;
                break;
            case 4: /* AND */
                op0 &= op1;
                break;
            case 5: /* SHR */
                op1 = op0 & 1;
                op0 = (op0 >> 1) | (s->carry << 7);
                s->carry = op1;
                break;
            case 6: /* ADD */
                op0 += op1;
                s->carry = op0 < op1;
                break;
            case 7: /* ADC */
                op0 += op1 + s->carry;
                if (s->carry)
                    s->carry = op0 <= op1;
                else
                    s->carry = op0 < op1;
                break;
            }

            switch (opcode) {
            case 5: /* From SFBR */
            case 7: /* Read-modify-write */
                lsi_reg_writeb(s, reg, op0);
                break;
            case 6: /* To SFBR */
                s->sfbr = op0;
                break;
            }
        }
        break;

    case 2: /* Transfer Control.  */
        {
            int cond;
            int jmp;

            if ((insn & 0x002e0000) == 0) {
                DPRINTF("NOP\n");
                break;
            }
            if (s->sist1 & LSI_SIST1_STO) {
                DPRINTF("Delayed select timeout\n");
                lsi_stop_script(s);
                break;
            }
            cond = jmp = (insn & (1 << 19)) != 0;
            if (cond == jmp && (insn & (1 << 21))) {
                DPRINTF("Compare carry %d\n", s->carry == jmp);
                cond = s->carry != 0;
            }
            if (cond == jmp && (insn & (1 << 17))) {
                DPRINTF("Compare phase %d %c= %d\n",
                        (s->sstat1 & PHASE_MASK),
                        jmp ? '=' : '!',
                        ((insn >> 24) & 7));
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
            }
            if (cond == jmp && (insn & (1 << 18))) {
                uint8_t mask;

                mask = (~insn >> 8) & 0xff;
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
                cond = (s->sfbr & mask) == (insn & mask);
            }
            if (cond == jmp) {
                if (insn & (1 << 23)) {
                    /* Relative address.  */
                    addr = s->dsp + sxt24(addr);
                }
                switch ((insn >> 27) & 7) {
                case 0: /* Jump */
                    DPRINTF("Jump to 0x%08x\n", addr);
                    s->dsp = addr;
                    break;
                case 1: /* Call */
                    DPRINTF("Call 0x%08x\n", addr);
                    s->temp = s->dsp;
                    s->dsp = addr;
                    break;
                case 2: /* Return */
                    DPRINTF("Return to 0x%08x\n", s->temp);
                    s->dsp = s->temp;
                    break;
                case 3: /* Interrupt */
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
                    if ((insn & (1 << 20)) != 0) {
                        s->istat0 |= LSI_ISTAT0_INTF;
                        lsi_update_irq(s);
                    } else {
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
                    }
                    break;
                default:
                    DPRINTF("Illegal transfer control\n");
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
                    break;
                }
            } else {
                DPRINTF("Control condition failed\n");
            }
        }
        break;

    case 3:
        if ((insn & (1 << 29)) == 0) {
            /* Memory move.  */
            uint32_t dest;
            /* ??? The docs imply the destination address is loaded into
               the TEMP register.  However the Linux drivers rely on
               the value being presrved.  */
            dest = read_dword(s, s->dsp);
            s->dsp += 4;
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
        } else {
            uint8_t data[7];
            int reg;
            int n;
            int i;

            if (insn & (1 << 28)) {
                addr = s->dsa + sxt24(addr);
            }
            n = (insn & 7);
            reg = (insn >> 16) & 0xff;
            if (insn & (1 << 24)) {
                cpu_physical_memory_read(addr, data, n);
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
                        addr, *(int *)data);
                for (i = 0; i < n; i++) {
                    lsi_reg_writeb(s, reg + i, data[i]);
                }
            } else {
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
                for (i = 0; i < n; i++) {
                    data[i] = lsi_reg_readb(s, reg + i);
                }
                cpu_physical_memory_write(addr, data, n);
            }
        }
    }
    if (insn_processed > 10000 && !s->waiting) {
        /* Some windows drivers make the device spin waiting for a memory
           location to change.  If we have been executed a lot of code then
           assume this is the case and force an unexpected device disconnect.
           This is apparently sufficient to beat the drivers into submission.
         */
        if (!(s->sien0 & LSI_SIST0_UDC))
            fprintf(stderr, "inf. loop with UDC masked\n");
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
        lsi_disconnect(s);
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
        if (s->dcntl & LSI_DCNTL_SSM) {
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
        } else {
            goto again;
        }
    }
    DPRINTF("SCRIPTS execution stopped\n");
}

static uint8_t lsi_reg_readb(LSIState *s, int offset)
{
    uint8_t tmp;
#define CASE_GET_REG24(name, addr) \
    case addr: return s->name & 0xff; \
    case addr + 1: return (s->name >> 8) & 0xff; \
    case addr + 2: return (s->name >> 16) & 0xff;

#define CASE_GET_REG32(name, addr) \
    case addr: return s->name & 0xff; \
    case addr + 1: return (s->name >> 8) & 0xff; \
    case addr + 2: return (s->name >> 16) & 0xff; \
    case addr + 3: return (s->name >> 24) & 0xff;

#ifdef DEBUG_LSI_REG
    DPRINTF("Read reg %x\n", offset);
#endif
    switch (offset) {
    case 0x00: /* SCNTL0 */
        return s->scntl0;
    case 0x01: /* SCNTL1 */
        return s->scntl1;
    case 0x02: /* SCNTL2 */
        return s->scntl2;
    case 0x03: /* SCNTL3 */
        return s->scntl3;
    case 0x04: /* SCID */
        return s->scid;
    case 0x05: /* SXFER */
        return s->sxfer;
    case 0x06: /* SDID */
        return s->sdid;
    case 0x07: /* GPREG0 */
        return 0x7f;
    case 0x08: /* Revision ID */
        return 0x00;
    case 0xa: /* SSID */
        return s->ssid;
    case 0xb: /* SBCL */
        /* ??? This is not correct. However it's (hopefully) only
           used for diagnostics, so should be ok.  */
        return 0;
    case 0xc: /* DSTAT */
        tmp = s->dstat | 0x80;
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
            s->dstat = 0;
        lsi_update_irq(s);
        return tmp;
    case 0x0d: /* SSTAT0 */
        return s->sstat0;
    case 0x0e: /* SSTAT1 */
        return s->sstat1;
    case 0x0f: /* SSTAT2 */
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
    CASE_GET_REG32(dsa, 0x10)
    case 0x14: /* ISTAT0 */
        return s->istat0;
    case 0x15: /* ISTAT1 */
        return s->istat1;
    case 0x16: /* MBOX0 */
        return s->mbox0;
    case 0x17: /* MBOX1 */
        return s->mbox1;
    case 0x18: /* CTEST0 */
        return 0xff;
    case 0x19: /* CTEST1 */
        return 0;
    case 0x1a: /* CTEST2 */
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
        if (s->istat0 & LSI_ISTAT0_SIGP) {
            s->istat0 &= ~LSI_ISTAT0_SIGP;
            tmp |= LSI_CTEST2_SIGP;
        }
        return tmp;
    case 0x1b: /* CTEST3 */
        return s->ctest3;
    CASE_GET_REG32(temp, 0x1c)
    case 0x20: /* DFIFO */
        return 0;
    case 0x21: /* CTEST4 */
        return s->ctest4;
    case 0x22: /* CTEST5 */
        return s->ctest5;
    case 0x23: /* CTEST6 */
         return 0;
    CASE_GET_REG24(dbc, 0x24)
    case 0x27: /* DCMD */
        return s->dcmd;
    CASE_GET_REG32(dnad, 0x28)
    CASE_GET_REG32(dsp, 0x2c)
    CASE_GET_REG32(dsps, 0x30)
    CASE_GET_REG32(scratch[0], 0x34)
    case 0x38: /* DMODE */
        return s->dmode;
    case 0x39: /* DIEN */
        return s->dien;
    case 0x3a: /* SBR */
        return s->sbr;
    case 0x3b: /* DCNTL */
        return s->dcntl;
    case 0x40: /* SIEN0 */
        return s->sien0;
    case 0x41: /* SIEN1 */
        return s->sien1;
    case 0x42: /* SIST0 */
        tmp = s->sist0;
        s->sist0 = 0;
        lsi_update_irq(s);
        return tmp;
    case 0x43: /* SIST1 */
        tmp = s->sist1;
        s->sist1 = 0;
        lsi_update_irq(s);
        return tmp;
    case 0x46: /* MACNTL */
        return 0x0f;
    case 0x47: /* GPCNTL0 */
        return 0x0f;
    case 0x48: /* STIME0 */
        return s->stime0;
    case 0x4a: /* RESPID0 */
        return s->respid0;
    case 0x4b: /* RESPID1 */
        return s->respid1;
    case 0x4d: /* STEST1 */
        return s->stest1;
    case 0x4e: /* STEST2 */
        return s->stest2;
    case 0x4f: /* STEST3 */
        return s->stest3;
    case 0x50: /* SIDL */
        /* This is needed by the linux drivers.  We currently only update it
           during the MSG IN phase.  */
        return s->sidl;
    case 0x52: /* STEST4 */
        return 0xe0;
    case 0x56: /* CCNTL0 */
        return s->ccntl0;
    case 0x57: /* CCNTL1 */
        return s->ccntl1;
    case 0x58: /* SBDL */
        /* Some drivers peek at the data bus during the MSG IN phase.  */
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
            return s->msg[0];
        return 0;
    case 0x59: /* SBDL high */
        return 0;
    CASE_GET_REG32(mmrs, 0xa0)
    CASE_GET_REG32(mmws, 0xa4)
    CASE_GET_REG32(sfs, 0xa8)
    CASE_GET_REG32(drs, 0xac)
    CASE_GET_REG32(sbms, 0xb0)
    CASE_GET_REG32(dbms, 0xb4)
    CASE_GET_REG32(dnad64, 0xb8)
    CASE_GET_REG32(pmjad1, 0xc0)
    CASE_GET_REG32(pmjad2, 0xc4)
    CASE_GET_REG32(rbc, 0xc8)
    CASE_GET_REG32(ua, 0xcc)
    CASE_GET_REG32(ia, 0xd4)
    CASE_GET_REG32(sbc, 0xd8)
    CASE_GET_REG32(csbc, 0xdc)
    }
    if (offset >= 0x5c && offset < 0xa0) {
        int n;
        int shift;
        n = (offset - 0x58) >> 2;
        shift = (offset & 3) * 8;
        return (s->scratch[n] >> shift) & 0xff;
    }
    BADF("readb 0x%x\n", offset);
    exit(1);
#undef CASE_GET_REG24
#undef CASE_GET_REG32
}

static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
{
#define CASE_SET_REG24(name, addr) \
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;

#define CASE_SET_REG32(name, addr) \
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;

#ifdef DEBUG_LSI_REG
    DPRINTF("Write reg %x = %02x\n", offset, val);
#endif
    switch (offset) {
    case 0x00: /* SCNTL0 */
        s->scntl0 = val;
        if (val & LSI_SCNTL0_START) {
            BADF("Start sequence not implemented\n");
        }
        break;
    case 0x01: /* SCNTL1 */
        s->scntl1 = val & ~LSI_SCNTL1_SST;
        if (val & LSI_SCNTL1_IARB) {
            BADF("Immediate Arbritration not implemented\n");
        }
        if (val & LSI_SCNTL1_RST) {
            if (!(s->sstat0 & LSI_SSTAT0_RST)) {
                DeviceState *dev;
                int id;

                for (id = 0; id < s->bus.ndev; id++) {
                    if (s->bus.devs[id]) {
                        dev = &s->bus.devs[id]->qdev;
                        dev->info->reset(dev);
                    }
                }
                s->sstat0 |= LSI_SSTAT0_RST;
                lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
            }
        } else {
            s->sstat0 &= ~LSI_SSTAT0_RST;
        }
        break;
    case 0x02: /* SCNTL2 */
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
        s->scntl2 = val;
        break;
    case 0x03: /* SCNTL3 */
        s->scntl3 = val;
        break;
    case 0x04: /* SCID */
        s->scid = val;
        break;
    case 0x05: /* SXFER */
        s->sxfer = val;
        break;
    case 0x06: /* SDID */
        if ((val & 0xf) != (s->ssid & 0xf))
            BADF("Destination ID does not match SSID\n");
        s->sdid = val & 0xf;
        break;
    case 0x07: /* GPREG0 */
        break;
    case 0x08: /* SFBR */
        /* The CPU is not allowed to write to this register.  However the
           SCRIPTS register move instructions are.  */
        s->sfbr = val;
        break;
    case 0x0a: case 0x0b:
        /* Openserver writes to these readonly registers on startup */
	return;
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
        /* Linux writes to these readonly registers on startup.  */
        return;
    CASE_SET_REG32(dsa, 0x10)
    case 0x14: /* ISTAT0 */
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
        if (val & LSI_ISTAT0_ABRT) {
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
        }
        if (val & LSI_ISTAT0_INTF) {
            s->istat0 &= ~LSI_ISTAT0_INTF;
            lsi_update_irq(s);
        }
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
            DPRINTF("Woken by SIGP\n");
            s->waiting = 0;
            s->dsp = s->dnad;
            lsi_execute_script(s);
        }
        if (val & LSI_ISTAT0_SRST) {
            lsi_soft_reset(s);
        }
        break;
    case 0x16: /* MBOX0 */
        s->mbox0 = val;
        break;
    case 0x17: /* MBOX1 */
        s->mbox1 = val;
        break;
    case 0x1a: /* CTEST2 */
	s->ctest2 = val & LSI_CTEST2_PCICIE;
	break;
    case 0x1b: /* CTEST3 */
        s->ctest3 = val & 0x0f;
        break;
    CASE_SET_REG32(temp, 0x1c)
    case 0x21: /* CTEST4 */
        if (val & 7) {
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
        }
        s->ctest4 = val;
        break;
    case 0x22: /* CTEST5 */
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
            BADF("CTEST5 DMA increment not implemented\n");
        }
        s->ctest5 = val;
        break;
    CASE_SET_REG24(dbc, 0x24)
    CASE_SET_REG32(dnad, 0x28)
    case 0x2c: /* DSP[0:7] */
        s->dsp &= 0xffffff00;
        s->dsp |= val;
        break;
    case 0x2d: /* DSP[8:15] */
        s->dsp &= 0xffff00ff;
        s->dsp |= val << 8;
        break;
    case 0x2e: /* DSP[16:23] */
        s->dsp &= 0xff00ffff;
        s->dsp |= val << 16;
        break;
    case 0x2f: /* DSP[24:31] */
        s->dsp &= 0x00ffffff;
        s->dsp |= val << 24;
        if ((s->dmode & LSI_DMODE_MAN) == 0
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
            lsi_execute_script(s);
        break;
    CASE_SET_REG32(dsps, 0x30)
    CASE_SET_REG32(scratch[0], 0x34)
    case 0x38: /* DMODE */
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
            BADF("IO mappings not implemented\n");
        }
        s->dmode = val;
        break;
    case 0x39: /* DIEN */
        s->dien = val;
        lsi_update_irq(s);
        break;
    case 0x3a: /* SBR */
        s->sbr = val;
        break;
    case 0x3b: /* DCNTL */
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
            lsi_execute_script(s);
        break;
    case 0x40: /* SIEN0 */
        s->sien0 = val;
        lsi_update_irq(s);
        break;
    case 0x41: /* SIEN1 */
        s->sien1 = val;
        lsi_update_irq(s);
        break;
    case 0x47: /* GPCNTL0 */
        break;
    case 0x48: /* STIME0 */
        s->stime0 = val;
        break;
    case 0x49: /* STIME1 */
        if (val & 0xf) {
            DPRINTF("General purpose timer not implemented\n");
            /* ??? Raising the interrupt immediately seems to be sufficient
               to keep the FreeBSD driver happy.  */
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
        }
        break;
    case 0x4a: /* RESPID0 */
        s->respid0 = val;
        break;
    case 0x4b: /* RESPID1 */
        s->respid1 = val;
        break;
    case 0x4d: /* STEST1 */
        s->stest1 = val;
        break;
    case 0x4e: /* STEST2 */
        if (val & 1) {
            BADF("Low level mode not implemented\n");
        }
        s->stest2 = val;
        break;
    case 0x4f: /* STEST3 */
        if (val & 0x41) {
            BADF("SCSI FIFO test mode not implemented\n");
        }
        s->stest3 = val;
        break;
    case 0x56: /* CCNTL0 */
        s->ccntl0 = val;
        break;
    case 0x57: /* CCNTL1 */
        s->ccntl1 = val;
        break;
    CASE_SET_REG32(mmrs, 0xa0)
    CASE_SET_REG32(mmws, 0xa4)
    CASE_SET_REG32(sfs, 0xa8)
    CASE_SET_REG32(drs, 0xac)
    CASE_SET_REG32(sbms, 0xb0)
    CASE_SET_REG32(dbms, 0xb4)
    CASE_SET_REG32(dnad64, 0xb8)
    CASE_SET_REG32(pmjad1, 0xc0)
    CASE_SET_REG32(pmjad2, 0xc4)
    CASE_SET_REG32(rbc, 0xc8)
    CASE_SET_REG32(ua, 0xcc)
    CASE_SET_REG32(ia, 0xd4)
    CASE_SET_REG32(sbc, 0xd8)
    CASE_SET_REG32(csbc, 0xdc)
    default:
        if (offset >= 0x5c && offset < 0xa0) {
            int n;
            int shift;
            n = (offset - 0x58) >> 2;
            shift = (offset & 3) * 8;
            s->scratch[n] &= ~(0xff << shift);
            s->scratch[n] |= (val & 0xff) << shift;
        } else {
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
        }
    }
#undef CASE_SET_REG24
#undef CASE_SET_REG32
}

static void lsi_mmio_write(void *opaque, target_phys_addr_t addr,
                           uint64_t val, unsigned size)
{
    LSIState *s = opaque;

    lsi_reg_writeb(s, addr & 0xff, val);
}

static uint64_t lsi_mmio_read(void *opaque, target_phys_addr_t addr,
                              unsigned size)
{
    LSIState *s = opaque;

    return lsi_reg_readb(s, addr & 0xff);
}

static const MemoryRegionOps lsi_mmio_ops = {
    .read = lsi_mmio_read,
    .write = lsi_mmio_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .impl = {
        .min_access_size = 1,
        .max_access_size = 1,
    },
};

static void lsi_ram_write(void *opaque, target_phys_addr_t addr,
                          uint64_t val, unsigned size)
{
    LSIState *s = opaque;
    uint32_t newval;
    uint32_t mask;
    int shift;

    newval = s->script_ram[addr >> 2];
    shift = (addr & 3) * 8;
    mask = ((uint64_t)1 << (size * 8)) - 1;
    newval &= ~(mask << shift);
    newval |= val << shift;
    s->script_ram[addr >> 2] = newval;
}

static uint64_t lsi_ram_read(void *opaque, target_phys_addr_t addr,
                             unsigned size)
{
    LSIState *s = opaque;
    uint32_t val;
    uint32_t mask;

    val = s->script_ram[addr >> 2];
    mask = ((uint64_t)1 << (size * 8)) - 1;
    val >>= (addr & 3) * 8;
    return val & mask;
}

static const MemoryRegionOps lsi_ram_ops = {
    .read = lsi_ram_read,
    .write = lsi_ram_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static uint64_t lsi_io_read(void *opaque, target_phys_addr_t addr,
                            unsigned size)
{
    LSIState *s = opaque;
    return lsi_reg_readb(s, addr & 0xff);
}

static void lsi_io_write(void *opaque, target_phys_addr_t addr,
                         uint64_t val, unsigned size)
{
    LSIState *s = opaque;
    lsi_reg_writeb(s, addr & 0xff, val);
}

static const MemoryRegionOps lsi_io_ops = {
    .read = lsi_io_read,
    .write = lsi_io_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .impl = {
        .min_access_size = 1,
        .max_access_size = 1,
    },
};

static void lsi_scsi_reset(DeviceState *dev)
{
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);

    lsi_soft_reset(s);
}

static void lsi_pre_save(void *opaque)
{
    LSIState *s = opaque;

    if (s->current) {
        assert(s->current->dma_buf == NULL);
        assert(s->current->dma_len == 0);
    }
    assert(QTAILQ_EMPTY(&s->queue));
}

static const VMStateDescription vmstate_lsi_scsi = {
    .name = "lsiscsi",
    .version_id = 0,
    .minimum_version_id = 0,
    .minimum_version_id_old = 0,
    .pre_save = lsi_pre_save,
    .fields      = (VMStateField []) {
        VMSTATE_PCI_DEVICE(dev, LSIState),

        VMSTATE_INT32(carry, LSIState),
        VMSTATE_INT32(status, LSIState),
        VMSTATE_INT32(msg_action, LSIState),
        VMSTATE_INT32(msg_len, LSIState),
        VMSTATE_BUFFER(msg, LSIState),
        VMSTATE_INT32(waiting, LSIState),

        VMSTATE_UINT32(dsa, LSIState),
        VMSTATE_UINT32(temp, LSIState),
        VMSTATE_UINT32(dnad, LSIState),
        VMSTATE_UINT32(dbc, LSIState),
        VMSTATE_UINT8(istat0, LSIState),
        VMSTATE_UINT8(istat1, LSIState),
        VMSTATE_UINT8(dcmd, LSIState),
        VMSTATE_UINT8(dstat, LSIState),
        VMSTATE_UINT8(dien, LSIState),
        VMSTATE_UINT8(sist0, LSIState),
        VMSTATE_UINT8(sist1, LSIState),
        VMSTATE_UINT8(sien0, LSIState),
        VMSTATE_UINT8(sien1, LSIState),
        VMSTATE_UINT8(mbox0, LSIState),
        VMSTATE_UINT8(mbox1, LSIState),
        VMSTATE_UINT8(dfifo, LSIState),
        VMSTATE_UINT8(ctest2, LSIState),
        VMSTATE_UINT8(ctest3, LSIState),
        VMSTATE_UINT8(ctest4, LSIState),
        VMSTATE_UINT8(ctest5, LSIState),
        VMSTATE_UINT8(ccntl0, LSIState),
        VMSTATE_UINT8(ccntl1, LSIState),
        VMSTATE_UINT32(dsp, LSIState),
        VMSTATE_UINT32(dsps, LSIState),
        VMSTATE_UINT8(dmode, LSIState),
        VMSTATE_UINT8(dcntl, LSIState),
        VMSTATE_UINT8(scntl0, LSIState),
        VMSTATE_UINT8(scntl1, LSIState),
        VMSTATE_UINT8(scntl2, LSIState),
        VMSTATE_UINT8(scntl3, LSIState),
        VMSTATE_UINT8(sstat0, LSIState),
        VMSTATE_UINT8(sstat1, LSIState),
        VMSTATE_UINT8(scid, LSIState),
        VMSTATE_UINT8(sxfer, LSIState),
        VMSTATE_UINT8(socl, LSIState),
        VMSTATE_UINT8(sdid, LSIState),
        VMSTATE_UINT8(ssid, LSIState),
        VMSTATE_UINT8(sfbr, LSIState),
        VMSTATE_UINT8(stest1, LSIState),
        VMSTATE_UINT8(stest2, LSIState),
        VMSTATE_UINT8(stest3, LSIState),
        VMSTATE_UINT8(sidl, LSIState),
        VMSTATE_UINT8(stime0, LSIState),
        VMSTATE_UINT8(respid0, LSIState),
        VMSTATE_UINT8(respid1, LSIState),
        VMSTATE_UINT32(mmrs, LSIState),
        VMSTATE_UINT32(mmws, LSIState),
        VMSTATE_UINT32(sfs, LSIState),
        VMSTATE_UINT32(drs, LSIState),
        VMSTATE_UINT32(sbms, LSIState),
        VMSTATE_UINT32(dbms, LSIState),
        VMSTATE_UINT32(dnad64, LSIState),
        VMSTATE_UINT32(pmjad1, LSIState),
        VMSTATE_UINT32(pmjad2, LSIState),
        VMSTATE_UINT32(rbc, LSIState),
        VMSTATE_UINT32(ua, LSIState),
        VMSTATE_UINT32(ia, LSIState),
        VMSTATE_UINT32(sbc, LSIState),
        VMSTATE_UINT32(csbc, LSIState),
        VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
        VMSTATE_UINT8(sbr, LSIState),

        VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
        VMSTATE_END_OF_LIST()
    }
};

static int lsi_scsi_uninit(PCIDevice *d)
{
    LSIState *s = DO_UPCAST(LSIState, dev, d);

    memory_region_destroy(&s->mmio_io);
    memory_region_destroy(&s->ram_io);
    memory_region_destroy(&s->io_io);

    return 0;
}

static const struct SCSIBusOps lsi_scsi_ops = {
    .transfer_data = lsi_transfer_data,
    .complete = lsi_command_complete,
    .cancel = lsi_request_cancelled
};

static int lsi_scsi_init(PCIDevice *dev)
{
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
    uint8_t *pci_conf;

    pci_conf = s->dev.config;

    /* PCI latency timer = 255 */
    pci_conf[PCI_LATENCY_TIMER] = 0xff;
    /* TODO: RST# value should be 0 */
    /* Interrupt pin 1 */
    pci_conf[PCI_INTERRUPT_PIN] = 0x01;

    memory_region_init_io(&s->mmio_io, &lsi_mmio_ops, s, "lsi-mmio", 0x400);
    memory_region_init_io(&s->ram_io, &lsi_ram_ops, s, "lsi-ram", 0x2000);
    memory_region_init_io(&s->io_io, &lsi_io_ops, s, "lsi-io", 256);

    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io_io);
    pci_register_bar(&s->dev, 1, 0, &s->mmio_io);
    pci_register_bar(&s->dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->ram_io);
    QTAILQ_INIT(&s->queue);

    scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, &lsi_scsi_ops);
    if (!dev->qdev.hotplugged) {
        return scsi_bus_legacy_handle_cmdline(&s->bus);
    }
    return 0;
}

static PCIDeviceInfo lsi_info = {
    .qdev.name  = "lsi53c895a",
    .qdev.alias = "lsi",
    .qdev.size  = sizeof(LSIState),
    .qdev.reset = lsi_scsi_reset,
    .qdev.vmsd  = &vmstate_lsi_scsi,
    .init       = lsi_scsi_init,
    .exit       = lsi_scsi_uninit,
    .vendor_id  = PCI_VENDOR_ID_LSI_LOGIC,
    .device_id  = PCI_DEVICE_ID_LSI_53C895A,
    .class_id   = PCI_CLASS_STORAGE_SCSI,
    .subsystem_id = 0x1000,
};

static void lsi53c895a_register_devices(void)
{
    pci_qdev_register(&lsi_info);
}

device_init(lsi53c895a_register_devices);