1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
|
/*
* ARM Integrator CP System emulation.
*
* Copyright (c) 2005 CodeSourcery, LLC.
* Written by Paul Brook
*
* This code is licenced under the GPL
*/
#include <vl.h>
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
#define INITRD_LOAD_ADDR 0x00800000
/* Stub functions for hardware that doesn't exist. */
void pic_set_irq(int irq, int level)
{
cpu_abort (cpu_single_env, "pic_set_irq");
}
void pic_info(void)
{
}
void irq_info(void)
{
}
static void *lcd;
void vga_update_display(void)
{
pl110_update_display(lcd);
}
void vga_screen_dump(const char *filename)
{
}
void vga_invalidate_display(void)
{
pl110_invalidate_display(lcd);
}
void DMA_run (void)
{
}
typedef struct {
uint32_t flash_offset;
uint32_t cm_osc;
uint32_t cm_ctrl;
uint32_t cm_lock;
uint32_t cm_auxosc;
uint32_t cm_sdram;
uint32_t cm_init;
uint32_t cm_flags;
uint32_t cm_nvflags;
uint32_t int_level;
uint32_t irq_enabled;
uint32_t fiq_enabled;
} integratorcm_state;
static uint8_t integrator_spd[128] = {
128, 8, 4, 11, 9, 1, 64, 0, 2, 0xa0, 0xa0, 0, 0, 8, 0, 1,
0xe, 4, 0x1c, 1, 2, 0x20, 0xc0, 0, 0, 0, 0, 0x30, 0x28, 0x30, 0x28, 0x40
};
static uint32_t integratorcm_read(void *opaque, target_phys_addr_t offset)
{
integratorcm_state *s = (integratorcm_state *)opaque;
offset -= 0x10000000;
if (offset >= 0x100 && offset < 0x200) {
/* CM_SPD */
if (offset >= 0x180)
return 0;
return integrator_spd[offset >> 2];
}
switch (offset >> 2) {
case 0: /* CM_ID */
return 0x411a3001;
case 1: /* CM_PROC */
return 0;
case 2: /* CM_OSC */
return s->cm_osc;
case 3: /* CM_CTRL */
return s->cm_ctrl;
case 4: /* CM_STAT */
return 0x00100000;
case 5: /* CM_LOCK */
if (s->cm_lock == 0xa05f) {
return 0x1a05f;
} else {
return s->cm_lock;
}
case 6: /* CM_LMBUSCNT */
/* ??? High frequency timer. */
cpu_abort(cpu_single_env, "integratorcm_read: CM_LMBUSCNT");
case 7: /* CM_AUXOSC */
return s->cm_auxosc;
case 8: /* CM_SDRAM */
return s->cm_sdram;
case 9: /* CM_INIT */
return s->cm_init;
case 10: /* CM_REFCT */
/* ??? High frequency timer. */
cpu_abort(cpu_single_env, "integratorcm_read: CM_REFCT");
case 12: /* CM_FLAGS */
return s->cm_flags;
case 14: /* CM_NVFLAGS */
return s->cm_nvflags;
case 16: /* CM_IRQ_STAT */
return s->int_level & s->irq_enabled;
case 17: /* CM_IRQ_RSTAT */
return s->int_level;
case 18: /* CM_IRQ_ENSET */
return s->irq_enabled;
case 20: /* CM_SOFT_INTSET */
return s->int_level & 1;
case 24: /* CM_FIQ_STAT */
return s->int_level & s->fiq_enabled;
case 25: /* CM_FIQ_RSTAT */
return s->int_level;
case 26: /* CM_FIQ_ENSET */
return s->fiq_enabled;
case 32: /* CM_VOLTAGE_CTL0 */
case 33: /* CM_VOLTAGE_CTL1 */
case 34: /* CM_VOLTAGE_CTL2 */
case 35: /* CM_VOLTAGE_CTL3 */
/* ??? Voltage control unimplemented. */
return 0;
default:
cpu_abort (cpu_single_env,
"integratorcm_read: Unimplemented offset 0x%x\n", offset);
return 0;
}
}
static void integratorcm_do_remap(integratorcm_state *s, int flash)
{
if (flash) {
cpu_register_physical_memory(0, 0x100000, IO_MEM_RAM);
} else {
cpu_register_physical_memory(0, 0x100000, s->flash_offset | IO_MEM_RAM);
}
//??? tlb_flush (cpu_single_env, 1);
}
static void integratorcm_set_ctrl(integratorcm_state *s, uint32_t value)
{
if (value & 8) {
cpu_abort(cpu_single_env, "Board reset\n");
}
if ((s->cm_init ^ value) & 4) {
integratorcm_do_remap(s, (value & 4) == 0);
}
if ((s->cm_init ^ value) & 1) {
printf("Green LED %s\n", (value & 1) ? "on" : "off");
}
s->cm_init = (s->cm_init & ~ 5) | (value ^ 5);
}
static void integratorcm_update(integratorcm_state *s)
{
/* ??? The CPU irq/fiq is raised when either the core module or base PIC
are active. */
if (s->int_level & (s->irq_enabled | s->fiq_enabled))
cpu_abort(cpu_single_env, "Core module interrupt\n");
}
static void integratorcm_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
integratorcm_state *s = (integratorcm_state *)opaque;
offset -= 0x10000000;
switch (offset >> 2) {
case 2: /* CM_OSC */
if (s->cm_lock == 0xa05f)
s->cm_osc = value;
break;
case 3: /* CM_CTRL */
integratorcm_set_ctrl(s, value);
break;
case 5: /* CM_LOCK */
s->cm_lock = value & 0xffff;
break;
case 7: /* CM_AUXOSC */
if (s->cm_lock == 0xa05f)
s->cm_auxosc = value;
break;
case 8: /* CM_SDRAM */
s->cm_sdram = value;
break;
case 9: /* CM_INIT */
/* ??? This can change the memory bus frequency. */
s->cm_init = value;
break;
case 12: /* CM_FLAGSS */
s->cm_flags |= value;
break;
case 13: /* CM_FLAGSC */
s->cm_flags &= ~value;
break;
case 14: /* CM_NVFLAGSS */
s->cm_nvflags |= value;
break;
case 15: /* CM_NVFLAGSS */
s->cm_nvflags &= ~value;
break;
case 18: /* CM_IRQ_ENSET */
s->irq_enabled |= value;
integratorcm_update(s);
break;
case 19: /* CM_IRQ_ENCLR */
s->irq_enabled &= ~value;
integratorcm_update(s);
break;
case 20: /* CM_SOFT_INTSET */
s->int_level |= (value & 1);
integratorcm_update(s);
break;
case 21: /* CM_SOFT_INTCLR */
s->int_level &= ~(value & 1);
integratorcm_update(s);
break;
case 26: /* CM_FIQ_ENSET */
s->fiq_enabled |= value;
integratorcm_update(s);
break;
case 27: /* CM_FIQ_ENCLR */
s->fiq_enabled &= ~value;
integratorcm_update(s);
break;
case 32: /* CM_VOLTAGE_CTL0 */
case 33: /* CM_VOLTAGE_CTL1 */
case 34: /* CM_VOLTAGE_CTL2 */
case 35: /* CM_VOLTAGE_CTL3 */
/* ??? Voltage control unimplemented. */
break;
default:
cpu_abort (cpu_single_env,
"integratorcm_write: Unimplemented offset 0x%x\n", offset);
break;
}
}
/* Integrator/CM control registers. */
static CPUReadMemoryFunc *integratorcm_readfn[] = {
integratorcm_read,
integratorcm_read,
integratorcm_read
};
static CPUWriteMemoryFunc *integratorcm_writefn[] = {
integratorcm_write,
integratorcm_write,
integratorcm_write
};
static void integratorcm_init(int memsz, uint32_t flash_offset)
{
int iomemtype;
integratorcm_state *s;
s = (integratorcm_state *)qemu_mallocz(sizeof(integratorcm_state));
s->cm_osc = 0x01000048;
/* ??? What should the high bits of this value be? */
s->cm_auxosc = 0x0007feff;
s->cm_sdram = 0x00011122;
if (memsz >= 256) {
integrator_spd[31] = 64;
s->cm_sdram |= 0x10;
} else if (memsz >= 128) {
integrator_spd[31] = 32;
s->cm_sdram |= 0x0c;
} else if (memsz >= 64) {
integrator_spd[31] = 16;
s->cm_sdram |= 0x08;
} else if (memsz >= 32) {
integrator_spd[31] = 4;
s->cm_sdram |= 0x04;
} else {
integrator_spd[31] = 2;
}
memcpy(integrator_spd + 73, "QEMU-MEMORY", 11);
s->cm_init = 0x00000112;
s->flash_offset = flash_offset;
iomemtype = cpu_register_io_memory(0, integratorcm_readfn,
integratorcm_writefn, s);
cpu_register_physical_memory(0x10000000, 0x007fffff, iomemtype);
integratorcm_do_remap(s, 1);
/* ??? Save/restore. */
}
/* Integrator/CP hardware emulation. */
/* Primary interrupt controller. */
typedef struct icp_pic_state
{
uint32_t base;
uint32_t level;
uint32_t irq_enabled;
uint32_t fiq_enabled;
void *parent;
/* -1 if parent is a cpu, otherwise IRQ number on parent PIC. */
int parent_irq;
} icp_pic_state;
static void icp_pic_update(icp_pic_state *s)
{
CPUState *env;
if (s->parent_irq != -1) {
uint32_t flags;
flags = (s->level & s->irq_enabled);
pic_set_irq_new(s->parent, s->parent_irq,
flags != 0);
return;
}
/* Raise CPU interrupt. */
env = (CPUState *)s->parent;
if (s->level & s->fiq_enabled) {
cpu_interrupt (env, CPU_INTERRUPT_FIQ);
} else {
cpu_reset_interrupt (env, CPU_INTERRUPT_FIQ);
}
if (s->level & s->irq_enabled) {
cpu_interrupt (env, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt (env, CPU_INTERRUPT_HARD);
}
}
void pic_set_irq_new(void *opaque, int irq, int level)
{
icp_pic_state *s = (icp_pic_state *)opaque;
if (level)
s->level |= 1 << irq;
else
s->level &= ~(1 << irq);
icp_pic_update(s);
}
static uint32_t icp_pic_read(void *opaque, target_phys_addr_t offset)
{
icp_pic_state *s = (icp_pic_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 0: /* IRQ_STATUS */
return s->level & s->irq_enabled;
case 1: /* IRQ_RAWSTAT */
return s->level;
case 2: /* IRQ_ENABLESET */
return s->irq_enabled;
case 4: /* INT_SOFTSET */
return s->level & 1;
case 8: /* FRQ_STATUS */
return s->level & s->fiq_enabled;
case 9: /* FRQ_RAWSTAT */
return s->level;
case 10: /* FRQ_ENABLESET */
return s->fiq_enabled;
case 3: /* IRQ_ENABLECLR */
case 5: /* INT_SOFTCLR */
case 11: /* FRQ_ENABLECLR */
default:
printf ("icp_pic_read: Bad register offset 0x%x\n", offset);
return 0;
}
}
static void icp_pic_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_pic_state *s = (icp_pic_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 2: /* IRQ_ENABLESET */
s->irq_enabled |= value;
break;
case 3: /* IRQ_ENABLECLR */
s->irq_enabled &= ~value;
break;
case 4: /* INT_SOFTSET */
if (value & 1)
pic_set_irq_new(s, 0, 1);
break;
case 5: /* INT_SOFTCLR */
if (value & 1)
pic_set_irq_new(s, 0, 0);
break;
case 10: /* FRQ_ENABLESET */
s->fiq_enabled |= value;
break;
case 11: /* FRQ_ENABLECLR */
s->fiq_enabled &= ~value;
break;
case 0: /* IRQ_STATUS */
case 1: /* IRQ_RAWSTAT */
case 8: /* FRQ_STATUS */
case 9: /* FRQ_RAWSTAT */
default:
printf ("icp_pic_write: Bad register offset 0x%x\n", offset);
return;
}
icp_pic_update(s);
}
static CPUReadMemoryFunc *icp_pic_readfn[] = {
icp_pic_read,
icp_pic_read,
icp_pic_read
};
static CPUWriteMemoryFunc *icp_pic_writefn[] = {
icp_pic_write,
icp_pic_write,
icp_pic_write
};
static icp_pic_state *icp_pic_init(uint32_t base, void *parent,
int parent_irq)
{
icp_pic_state *s;
int iomemtype;
s = (icp_pic_state *)qemu_mallocz(sizeof(icp_pic_state));
if (!s)
return NULL;
s->base = base;
s->parent = parent;
s->parent_irq = parent_irq;
iomemtype = cpu_register_io_memory(0, icp_pic_readfn,
icp_pic_writefn, s);
cpu_register_physical_memory(base, 0x007fffff, iomemtype);
/* ??? Save/restore. */
return s;
}
/* Timers. */
/* System bus clock speed (40MHz) for timer 0. Not sure about this value. */
#define ICP_BUS_FREQ 40000000
typedef struct {
int64_t next_time;
int64_t expires[3];
int64_t loaded[3];
QEMUTimer *timer;
icp_pic_state *pic;
uint32_t base;
uint32_t control[3];
uint32_t count[3];
uint32_t limit[3];
int freq[3];
int int_level[3];
} icp_pit_state;
/* Calculate the new expiry time of the given timer. */
static void icp_pit_reload(icp_pit_state *s, int n)
{
int64_t delay;
s->loaded[n] = s->expires[n];
delay = muldiv64(s->count[n], ticks_per_sec, s->freq[n]);
if (delay == 0)
delay = 1;
s->expires[n] += delay;
}
/* Check all active timers, and schedule the next timer interrupt. */
static void icp_pit_update(icp_pit_state *s, int64_t now)
{
int n;
int64_t next;
next = now;
for (n = 0; n < 3; n++) {
/* Ignore disabled timers. */
if ((s->control[n] & 0x80) == 0)
continue;
/* Ignore expired one-shot timers. */
if (s->count[n] == 0 && s->control[n] & 1)
continue;
if (s->expires[n] - now <= 0) {
/* Timer has expired. */
s->int_level[n] = 1;
if (s->control[n] & 1) {
/* One-shot. */
s->count[n] = 0;
} else {
if ((s->control[n] & 0x40) == 0) {
/* Free running. */
if (s->control[n] & 2)
s->count[n] = 0xffffffff;
else
s->count[n] = 0xffff;
} else {
/* Periodic. */
s->count[n] = s->limit[n];
}
}
}
while (s->expires[n] - now <= 0) {
icp_pit_reload(s, n);
}
}
/* Update interrupts. */
for (n = 0; n < 3; n++) {
if (s->int_level[n] && (s->control[n] & 0x20)) {
pic_set_irq_new(s->pic, 5 + n, 1);
} else {
pic_set_irq_new(s->pic, 5 + n, 0);
}
if (next - s->expires[n] < 0)
next = s->expires[n];
}
/* Schedule the next timer interrupt. */
if (next == now) {
qemu_del_timer(s->timer);
s->next_time = 0;
} else if (next != s->next_time) {
qemu_mod_timer(s->timer, next);
s->next_time = next;
}
}
/* Return the current value of the timer. */
static uint32_t icp_pit_getcount(icp_pit_state *s, int n, int64_t now)
{
int64_t elapsed;
int64_t period;
if (s->count[n] == 0)
return 0;
if ((s->control[n] & 0x80) == 0)
return s->count[n];
elapsed = now - s->loaded[n];
period = s->expires[n] - s->loaded[n];
/* If the timer should have expired then return 0. This can happen
when the host timer signal doesnt occur immediately. It's better to
have a timer appear to sit at zero for a while than have it wrap
around before the guest interrupt is raised. */
/* ??? Could we trigger the interrupt here? */
if (elapsed > period)
return 0;
/* We need to calculate count * elapsed / period without overfowing.
Scale both elapsed and period so they fit in a 32-bit int. */
while (period != (int32_t)period) {
period >>= 1;
elapsed >>= 1;
}
return ((uint64_t)s->count[n] * (uint64_t)(int32_t)elapsed)
/ (int32_t)period;
}
static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
{
int n;
icp_pit_state *s = (icp_pit_state *)opaque;
offset -= s->base;
n = offset >> 8;
if (n > 2)
cpu_abort (cpu_single_env, "icp_pit_read: Bad timer %x\n", offset);
switch ((offset & 0xff) >> 2) {
case 0: /* TimerLoad */
case 6: /* TimerBGLoad */
return s->limit[n];
case 1: /* TimerValue */
return icp_pit_getcount(s, n, qemu_get_clock(vm_clock));
case 2: /* TimerControl */
return s->control[n];
case 4: /* TimerRIS */
return s->int_level[n];
case 5: /* TimerMIS */
if ((s->control[n] & 0x20) == 0)
return 0;
return s->int_level[n];
default:
cpu_abort (cpu_single_env, "icp_pit_read: Bad offset %x\n", offset);
return 0;
}
}
static void icp_pit_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_pit_state *s = (icp_pit_state *)opaque;
int n;
int64_t now;
now = qemu_get_clock(vm_clock);
offset -= s->base;
n = offset >> 8;
if (n > 2)
cpu_abort (cpu_single_env, "icp_pit_write: Bad offset %x\n", offset);
switch ((offset & 0xff) >> 2) {
case 0: /* TimerLoad */
s->limit[n] = value;
s->count[n] = value;
s->expires[n] = now;
icp_pit_reload(s, n);
break;
case 1: /* TimerValue */
/* ??? Linux seems to want to write to this readonly register.
Ignore it. */
break;
case 2: /* TimerControl */
if (s->control[n] & 0x80) {
/* Pause the timer if it is running. This may cause some
inaccuracy dure to rounding, but avoids a whole lot of other
messyness. */
s->count[n] = icp_pit_getcount(s, n, now);
}
s->control[n] = value;
if (n == 0)
s->freq[n] = ICP_BUS_FREQ;
else
s->freq[n] = 1000000;
/* ??? Need to recalculate expiry time after changing divisor. */
switch ((value >> 2) & 3) {
case 1: s->freq[n] >>= 4; break;
case 2: s->freq[n] >>= 8; break;
}
if (s->control[n] & 0x80) {
/* Restart the timer if still enabled. */
s->expires[n] = now;
icp_pit_reload(s, n);
}
break;
case 3: /* TimerIntClr */
s->int_level[n] = 0;
break;
case 6: /* TimerBGLoad */
s->limit[n] = value;
break;
default:
cpu_abort (cpu_single_env, "icp_pit_write: Bad offset %x\n", offset);
}
icp_pit_update(s, now);
}
static void icp_pit_tick(void *opaque)
{
int64_t now;
now = qemu_get_clock(vm_clock);
icp_pit_update((icp_pit_state *)opaque, now);
}
static CPUReadMemoryFunc *icp_pit_readfn[] = {
icp_pit_read,
icp_pit_read,
icp_pit_read
};
static CPUWriteMemoryFunc *icp_pit_writefn[] = {
icp_pit_write,
icp_pit_write,
icp_pit_write
};
static void icp_pit_init(uint32_t base, icp_pic_state *pic)
{
int iomemtype;
icp_pit_state *s;
int n;
s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
s->base = base;
s->pic = pic;
s->freq[0] = ICP_BUS_FREQ;
s->freq[1] = 1000000;
s->freq[2] = 1000000;
for (n = 0; n < 3; n++) {
s->control[n] = 0x20;
s->count[n] = 0xffffffff;
}
iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
icp_pit_writefn, s);
cpu_register_physical_memory(base, 0x007fffff, iomemtype);
s->timer = qemu_new_timer(vm_clock, icp_pit_tick, s);
/* ??? Save/restore. */
}
/* ARM PrimeCell PL011 UART */
typedef struct {
uint32_t base;
uint32_t readbuff;
uint32_t flags;
uint32_t lcr;
uint32_t cr;
uint32_t dmacr;
uint32_t int_enabled;
uint32_t int_level;
uint32_t read_fifo[16];
uint32_t ilpr;
uint32_t ibrd;
uint32_t fbrd;
uint32_t ifl;
int read_pos;
int read_count;
int read_trigger;
CharDriverState *chr;
icp_pic_state *pic;
int irq;
} pl011_state;
#define PL011_INT_TX 0x20
#define PL011_INT_RX 0x10
#define PL011_FLAG_TXFE 0x80
#define PL011_FLAG_RXFF 0x40
#define PL011_FLAG_TXFF 0x20
#define PL011_FLAG_RXFE 0x10
static const unsigned char pl011_id[] =
{ 0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
static void pl011_update(pl011_state *s)
{
uint32_t flags;
flags = s->int_level & s->int_enabled;
pic_set_irq_new(s->pic, s->irq, flags != 0);
}
static uint32_t pl011_read(void *opaque, target_phys_addr_t offset)
{
pl011_state *s = (pl011_state *)opaque;
uint32_t c;
offset -= s->base;
if (offset >= 0xfe0 && offset < 0x1000) {
return pl011_id[(offset - 0xfe0) >> 2];
}
switch (offset >> 2) {
case 0: /* UARTDR */
s->flags &= ~PL011_FLAG_RXFF;
c = s->read_fifo[s->read_pos];
if (s->read_count > 0) {
s->read_count--;
if (++s->read_pos == 16)
s->read_pos = 0;
}
if (s->read_count == 0) {
s->flags |= PL011_FLAG_RXFE;
}
if (s->read_count == s->read_trigger - 1)
s->int_level &= ~ PL011_INT_RX;
pl011_update(s);
return c;
case 1: /* UARTCR */
return 0;
case 6: /* UARTFR */
return s->flags;
case 8: /* UARTILPR */
return s->ilpr;
case 9: /* UARTIBRD */
return s->ibrd;
case 10: /* UARTFBRD */
return s->fbrd;
case 11: /* UARTLCR_H */
return s->lcr;
case 12: /* UARTCR */
return s->cr;
case 13: /* UARTIFLS */
return s->ifl;
case 14: /* UARTIMSC */
return s->int_enabled;
case 15: /* UARTRIS */
return s->int_level;
case 16: /* UARTMIS */
return s->int_level & s->int_enabled;
case 18: /* UARTDMACR */
return s->dmacr;
default:
cpu_abort (cpu_single_env, "pl011_read: Bad offset %x\n", offset);
return 0;
}
}
static void pl011_set_read_trigger(pl011_state *s)
{
#if 0
/* The docs say the RX interrupt is triggered when the FIFO exceeds
the threshold. However linux only reads the FIFO in response to an
interrupt. Triggering the interrupt when the FIFO is non-empty seems
to make things work. */
if (s->lcr & 0x10)
s->read_trigger = (s->ifl >> 1) & 0x1c;
else
#endif
s->read_trigger = 1;
}
static void pl011_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
pl011_state *s = (pl011_state *)opaque;
unsigned char ch;
offset -= s->base;
switch (offset >> 2) {
case 0: /* UARTDR */
/* ??? Check if transmitter is enabled. */
ch = value;
if (s->chr)
qemu_chr_write(s->chr, &ch, 1);
s->int_level |= PL011_INT_TX;
pl011_update(s);
break;
case 1: /* UARTCR */
s->cr = value;
break;
case 8: /* UARTUARTILPR */
s->ilpr = value;
break;
case 9: /* UARTIBRD */
s->ibrd = value;
break;
case 10: /* UARTFBRD */
s->fbrd = value;
break;
case 11: /* UARTLCR_H */
s->lcr = value;
pl011_set_read_trigger(s);
break;
case 12: /* UARTCR */
/* ??? Need to implement the enable and loopback bits. */
s->cr = value;
break;
case 13: /* UARTIFS */
s->ifl = value;
pl011_set_read_trigger(s);
break;
case 14: /* UARTIMSC */
s->int_enabled = value;
pl011_update(s);
break;
case 17: /* UARTICR */
s->int_level &= ~value;
pl011_update(s);
break;
case 18: /* UARTDMACR */
s->dmacr = value;
if (value & 3)
cpu_abort(cpu_single_env, "PL011: DMA not implemented\n");
break;
default:
cpu_abort (cpu_single_env, "pl011_write: Bad offset %x\n", offset);
}
}
static int pl011_can_recieve(void *opaque)
{
pl011_state *s = (pl011_state *)opaque;
if (s->lcr & 0x10)
return s->read_count < 16;
else
return s->read_count < 1;
}
static void pl011_recieve(void *opaque, const uint8_t *buf, int size)
{
pl011_state *s = (pl011_state *)opaque;
int slot;
slot = s->read_pos + s->read_count;
if (slot >= 16)
slot -= 16;
s->read_fifo[slot] = *buf;
s->read_count++;
s->flags &= ~PL011_FLAG_RXFE;
if (s->cr & 0x10 || s->read_count == 16) {
s->flags |= PL011_FLAG_RXFF;
}
if (s->read_count == s->read_trigger) {
s->int_level |= PL011_INT_RX;
pl011_update(s);
}
}
static void pl011_event(void *opaque, int event)
{
/* ??? Should probably implement break. */
}
static CPUReadMemoryFunc *pl011_readfn[] = {
pl011_read,
pl011_read,
pl011_read
};
static CPUWriteMemoryFunc *pl011_writefn[] = {
pl011_write,
pl011_write,
pl011_write
};
static void pl011_init(uint32_t base, icp_pic_state *pic, int irq,
CharDriverState *chr)
{
int iomemtype;
pl011_state *s;
s = (pl011_state *)qemu_mallocz(sizeof(pl011_state));
iomemtype = cpu_register_io_memory(0, pl011_readfn,
pl011_writefn, s);
cpu_register_physical_memory(base, 0x007fffff, iomemtype);
s->base = base;
s->pic = pic;
s->irq = irq;
s->chr = chr;
s->read_trigger = 1;
s->ifl = 0x12;
s->cr = 0x300;
s->flags = 0x90;
if (chr){
qemu_chr_add_read_handler(chr, pl011_can_recieve, pl011_recieve, s);
qemu_chr_add_event_handler(chr, pl011_event);
}
/* ??? Save/restore. */
}
/* CP control registers. */
typedef struct {
uint32_t base;
} icp_control_state;
static uint32_t icp_control_read(void *opaque, target_phys_addr_t offset)
{
icp_control_state *s = (icp_control_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 0: /* CP_IDFIELD */
return 0x41034003;
case 1: /* CP_FLASHPROG */
return 0;
case 2: /* CP_INTREG */
return 0;
case 3: /* CP_DECODE */
return 0x11;
default:
cpu_abort (cpu_single_env, "icp_control_read: Bad offset %x\n", offset);
return 0;
}
}
static void icp_control_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_control_state *s = (icp_control_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 1: /* CP_FLASHPROG */
case 2: /* CP_INTREG */
case 3: /* CP_DECODE */
/* Nothing interesting implemented yet. */
break;
default:
cpu_abort (cpu_single_env, "icp_control_write: Bad offset %x\n", offset);
}
}
static CPUReadMemoryFunc *icp_control_readfn[] = {
icp_control_read,
icp_control_read,
icp_control_read
};
static CPUWriteMemoryFunc *icp_control_writefn[] = {
icp_control_write,
icp_control_write,
icp_control_write
};
static void icp_control_init(uint32_t base)
{
int iomemtype;
icp_control_state *s;
s = (icp_control_state *)qemu_mallocz(sizeof(icp_control_state));
iomemtype = cpu_register_io_memory(0, icp_control_readfn,
icp_control_writefn, s);
cpu_register_physical_memory(base, 0x007fffff, iomemtype);
s->base = base;
/* ??? Save/restore. */
}
/* Keyboard/Mouse Interface. */
typedef struct {
void *dev;
uint32_t base;
uint32_t cr;
uint32_t clk;
uint32_t last;
icp_pic_state *pic;
int pending;
int irq;
int is_mouse;
} icp_kmi_state;
static void icp_kmi_update(void *opaque, int level)
{
icp_kmi_state *s = (icp_kmi_state *)opaque;
int raise;
s->pending = level;
raise = (s->pending && (s->cr & 0x10) != 0)
|| (s->cr & 0x08) != 0;
pic_set_irq_new(s->pic, s->irq, raise);
}
static uint32_t icp_kmi_read(void *opaque, target_phys_addr_t offset)
{
icp_kmi_state *s = (icp_kmi_state *)opaque;
offset -= s->base;
if (offset >= 0xfe0 && offset < 0x1000)
return 0;
switch (offset >> 2) {
case 0: /* KMICR */
return s->cr;
case 1: /* KMISTAT */
/* KMIC and KMID bits not implemented. */
if (s->pending) {
return 0x10;
} else {
return 0;
}
case 2: /* KMIDATA */
if (s->pending)
s->last = ps2_read_data(s->dev);
return s->last;
case 3: /* KMICLKDIV */
return s->clk;
case 4: /* KMIIR */
return s->pending | 2;
default:
cpu_abort (cpu_single_env, "icp_kmi_read: Bad offset %x\n", offset);
return 0;
}
}
static void icp_kmi_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
icp_kmi_state *s = (icp_kmi_state *)opaque;
offset -= s->base;
switch (offset >> 2) {
case 0: /* KMICR */
s->cr = value;
icp_kmi_update(s, s->pending);
/* ??? Need to implement the enable/disable bit. */
break;
case 2: /* KMIDATA */
/* ??? This should toggle the TX interrupt line. */
/* ??? This means kbd/mouse can block each other. */
if (s->is_mouse) {
ps2_write_mouse(s->dev, value);
} else {
ps2_write_keyboard(s->dev, value);
}
break;
case 3: /* KMICLKDIV */
s->clk = value;
return;
default:
cpu_abort (cpu_single_env, "icp_kmi_write: Bad offset %x\n", offset);
}
}
static CPUReadMemoryFunc *icp_kmi_readfn[] = {
icp_kmi_read,
icp_kmi_read,
icp_kmi_read
};
static CPUWriteMemoryFunc *icp_kmi_writefn[] = {
icp_kmi_write,
icp_kmi_write,
icp_kmi_write
};
static void icp_kmi_init(uint32_t base, icp_pic_state * pic, int irq,
int is_mouse)
{
int iomemtype;
icp_kmi_state *s;
s = (icp_kmi_state *)qemu_mallocz(sizeof(icp_kmi_state));
iomemtype = cpu_register_io_memory(0, icp_kmi_readfn,
icp_kmi_writefn, s);
cpu_register_physical_memory(base, 0x007fffff, iomemtype);
s->base = base;
s->pic = pic;
s->irq = irq;
s->is_mouse = is_mouse;
if (is_mouse)
s->dev = ps2_mouse_init(icp_kmi_update, s);
else
s->dev = ps2_kbd_init(icp_kmi_update, s);
/* ??? Save/restore. */
}
/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
static uint32_t bootloader[] = {
0xe3a00000, /* mov r0, #0 */
0xe3a01013, /* mov r1, #0x13 */
0xe3811c01, /* orr r1, r1, #0x100 */
0xe59f2000, /* ldr r2, [pc, #0] */
0xe59ff000, /* ldr pc, [pc, #0] */
0, /* Address of kernel args. Set by integratorcp_init. */
0 /* Kernel entry point. Set by integratorcp_init. */
};
static void set_kernel_args(uint32_t ram_size, int initrd_size,
const char *kernel_cmdline)
{
uint32_t *p;
p = (uint32_t *)(phys_ram_base + KERNEL_ARGS_ADDR);
/* ATAG_CORE */
stl_raw(p++, 5);
stl_raw(p++, 0x54410001);
stl_raw(p++, 1);
stl_raw(p++, 0x1000);
stl_raw(p++, 0);
/* ATAG_MEM */
stl_raw(p++, 4);
stl_raw(p++, 0x54410002);
stl_raw(p++, ram_size);
stl_raw(p++, 0);
if (initrd_size) {
/* ATAG_INITRD2 */
stl_raw(p++, 4);
stl_raw(p++, 0x54420005);
stl_raw(p++, INITRD_LOAD_ADDR);
stl_raw(p++, initrd_size);
}
if (kernel_cmdline && *kernel_cmdline) {
/* ATAG_CMDLINE */
int cmdline_size;
cmdline_size = strlen(kernel_cmdline);
memcpy (p + 2, kernel_cmdline, cmdline_size + 1);
cmdline_size = (cmdline_size >> 2) + 1;
stl_raw(p++, cmdline_size + 2);
stl_raw(p++, 0x54410009);
p += cmdline_size;
}
/* ATAG_END */
stl_raw(p++, 0);
stl_raw(p++, 0);
}
/* Board init. */
static void integratorcp_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename)
{
CPUState *env;
uint32_t bios_offset;
icp_pic_state *pic;
int kernel_size;
int initrd_size;
int n;
env = cpu_init();
bios_offset = ram_size + vga_ram_size;
/* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash. */
/* ??? RAM shoud repeat to fill physical memory space. */
/* SDRAM at address zero*/
cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
/* And again at address 0x80000000 */
cpu_register_physical_memory(0x80000000, ram_size, IO_MEM_RAM);
integratorcm_init(ram_size >> 20, bios_offset);
pic = icp_pic_init(0x14000000, env, -1);
icp_pic_init(0xca000000, pic, 26);
icp_pit_init(0x13000000, pic);
pl011_init(0x16000000, pic, 1, serial_hds[0]);
pl011_init(0x17000000, pic, 2, serial_hds[1]);
icp_control_init(0xcb000000);
icp_kmi_init(0x18000000, pic, 3, 0);
icp_kmi_init(0x19000000, pic, 4, 1);
if (nd_table[0].vlan) {
if (nd_table[0].model == NULL
|| strcmp(nd_table[0].model, "smc91c111") == 0) {
smc91c111_init(&nd_table[0], 0xc8000000, pic, 27);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
exit (1);
}
}
lcd = pl110_init(ds, 0xc0000000, pic, 22);
/* Load the kernel. */
if (!kernel_filename) {
fprintf(stderr, "Kernel image must be specified\n");
exit(1);
}
kernel_size = load_image(kernel_filename,
phys_ram_base + KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename);
exit(1);
}
if (initrd_filename) {
initrd_size = load_image(initrd_filename,
phys_ram_base + INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initrd '%s'\n",
initrd_filename);
exit(1);
}
} else {
initrd_size = 0;
}
bootloader[5] = KERNEL_ARGS_ADDR;
bootloader[6] = KERNEL_LOAD_ADDR;
for (n = 0; n < sizeof(bootloader) / 4; n++)
stl_raw(phys_ram_base + (n * 4), bootloader[n]);
set_kernel_args(ram_size, initrd_size, kernel_cmdline);
}
QEMUMachine integratorcp_machine = {
"integratorcp",
"ARM Integrator/CP",
integratorcp_init,
};
|