aboutsummaryrefslogtreecommitdiff
path: root/hw/intc/riscv_aclint.c
blob: f1a5d3d284fd356dad97e64f47d3607ea02a631c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * RISC-V ACLINT (Advanced Core Local Interruptor)
 * URL: https://github.com/riscv/riscv-aclint
 *
 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
 * Copyright (c) 2017 SiFive, Inc.
 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
 *
 * This provides real-time clock, timer and interprocessor interrupts.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/sysbus.h"
#include "target/riscv/cpu.h"
#include "hw/qdev-properties.h"
#include "hw/intc/riscv_aclint.h"
#include "qemu/timer.h"
#include "hw/irq.h"

typedef struct riscv_aclint_mtimer_callback {
    RISCVAclintMTimerState *s;
    int num;
} riscv_aclint_mtimer_callback;

static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq)
{
    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
        timebase_freq, NANOSECONDS_PER_SECOND);
}

/*
 * Called when timecmp is written to update the QEMU timer or immediately
 * trigger timer interrupt if mtimecmp <= current timer value.
 */
static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
                                              RISCVCPU *cpu,
                                              int hartid,
                                              uint64_t value,
                                              uint32_t timebase_freq)
{
    uint64_t next;
    uint64_t diff;

    uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);

    cpu->env.timecmp = value;
    if (cpu->env.timecmp <= rtc_r) {
        /*
         * If we're setting an MTIMECMP value in the "past",
         * immediately raise the timer interrupt
         */
        qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
        return;
    }

    /* otherwise, set up the future timer interrupt */
    qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
    diff = cpu->env.timecmp - rtc_r;
    /* back to ns (note args switched in muldiv64) */
    uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);

    /*
     * check if ns_diff overflowed and check if the addition would potentially
     * overflow
     */
    if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
        ns_diff > INT64_MAX) {
        next = INT64_MAX;
    } else {
        /*
         * as it is very unlikely qemu_clock_get_ns will return a value
         * greater than INT64_MAX, no additional check is needed for an
         * unsigned integer overflow.
         */
        next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
        /*
         * if ns_diff is INT64_MAX next may still be outside the range
         * of a signed integer.
         */
        next = MIN(next, INT64_MAX);
    }

    timer_mod(cpu->env.timer, next);
}

/*
 * Callback used when the timer set using timer_mod expires.
 * Should raise the timer interrupt line
 */
static void riscv_aclint_mtimer_cb(void *opaque)
{
    riscv_aclint_mtimer_callback *state = opaque;

    qemu_irq_raise(state->s->timer_irqs[state->num]);
}

/* CPU read MTIMER register */
static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
    unsigned size)
{
    RISCVAclintMTimerState *mtimer = opaque;

    if (addr >= mtimer->timecmp_base &&
        addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
        size_t hartid = mtimer->hartid_base +
                        ((addr - mtimer->timecmp_base) >> 3);
        CPUState *cpu = qemu_get_cpu(hartid);
        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
        if (!env) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "aclint-mtimer: invalid hartid: %zu", hartid);
        } else if ((addr & 0x7) == 0) {
            /* timecmp_lo */
            uint64_t timecmp = env->timecmp;
            return timecmp & 0xFFFFFFFF;
        } else if ((addr & 0x7) == 4) {
            /* timecmp_hi */
            uint64_t timecmp = env->timecmp;
            return (timecmp >> 32) & 0xFFFFFFFF;
        } else {
            qemu_log_mask(LOG_UNIMP,
                          "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
            return 0;
        }
    } else if (addr == mtimer->time_base) {
        /* time_lo */
        return cpu_riscv_read_rtc(mtimer->timebase_freq) & 0xFFFFFFFF;
    } else if (addr == mtimer->time_base + 4) {
        /* time_hi */
        return (cpu_riscv_read_rtc(mtimer->timebase_freq) >> 32) & 0xFFFFFFFF;
    }

    qemu_log_mask(LOG_UNIMP,
                  "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
    return 0;
}

/* CPU write MTIMER register */
static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
    uint64_t value, unsigned size)
{
    RISCVAclintMTimerState *mtimer = opaque;

    if (addr >= mtimer->timecmp_base &&
        addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
        size_t hartid = mtimer->hartid_base +
                        ((addr - mtimer->timecmp_base) >> 3);
        CPUState *cpu = qemu_get_cpu(hartid);
        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
        if (!env) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "aclint-mtimer: invalid hartid: %zu", hartid);
        } else if ((addr & 0x7) == 0) {
            /* timecmp_lo */
            uint64_t timecmp_hi = env->timecmp >> 32;
            riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
                timecmp_hi << 32 | (value & 0xFFFFFFFF),
                mtimer->timebase_freq);
            return;
        } else if ((addr & 0x7) == 4) {
            /* timecmp_hi */
            uint64_t timecmp_lo = env->timecmp;
            riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
                value << 32 | (timecmp_lo & 0xFFFFFFFF),
                mtimer->timebase_freq);
        } else {
            qemu_log_mask(LOG_UNIMP,
                          "aclint-mtimer: invalid timecmp write: %08x",
                          (uint32_t)addr);
        }
        return;
    } else if (addr == mtimer->time_base) {
        /* time_lo */
        qemu_log_mask(LOG_UNIMP,
                      "aclint-mtimer: time_lo write not implemented");
        return;
    } else if (addr == mtimer->time_base + 4) {
        /* time_hi */
        qemu_log_mask(LOG_UNIMP,
                      "aclint-mtimer: time_hi write not implemented");
        return;
    }

    qemu_log_mask(LOG_UNIMP,
                  "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
}

static const MemoryRegionOps riscv_aclint_mtimer_ops = {
    .read = riscv_aclint_mtimer_read,
    .write = riscv_aclint_mtimer_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 8
    }
};

static Property riscv_aclint_mtimer_properties[] = {
    DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
        hartid_base, 0),
    DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
    DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
        timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
    DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
        time_base, RISCV_ACLINT_DEFAULT_MTIME),
    DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
        aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
    DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
        timebase_freq, 0),
    DEFINE_PROP_END_OF_LIST(),
};

static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
{
    RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
    int i;

    memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
                          s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);

    s->timer_irqs = g_malloc(sizeof(qemu_irq) * s->num_harts);
    qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);

    /* Claim timer interrupt bits */
    for (i = 0; i < s->num_harts; i++) {
        RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
        if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
            error_report("MTIP already claimed");
            exit(1);
        }
    }
}

static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    dc->realize = riscv_aclint_mtimer_realize;
    device_class_set_props(dc, riscv_aclint_mtimer_properties);
}

static const TypeInfo riscv_aclint_mtimer_info = {
    .name          = TYPE_RISCV_ACLINT_MTIMER,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(RISCVAclintMTimerState),
    .class_init    = riscv_aclint_mtimer_class_init,
};

/*
 * Create ACLINT MTIMER device.
 */
DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
    uint32_t hartid_base, uint32_t num_harts,
    uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
    bool provide_rdtime)
{
    int i;
    DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);

    assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
    assert(!(addr & 0x7));
    assert(!(timecmp_base & 0x7));
    assert(!(time_base & 0x7));

    qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
    qdev_prop_set_uint32(dev, "num-harts", num_harts);
    qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
    qdev_prop_set_uint32(dev, "time-base", time_base);
    qdev_prop_set_uint32(dev, "aperture-size", size);
    qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);

    for (i = 0; i < num_harts; i++) {
        CPUState *cpu = qemu_get_cpu(hartid_base + i);
        RISCVCPU *rvcpu = RISCV_CPU(cpu);
        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
        riscv_aclint_mtimer_callback *cb =
            g_malloc0(sizeof(riscv_aclint_mtimer_callback));

        if (!env) {
            g_free(cb);
            continue;
        }
        if (provide_rdtime) {
            riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, timebase_freq);
        }

        cb->s = RISCV_ACLINT_MTIMER(dev);
        cb->num = i;
        env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
                                  &riscv_aclint_mtimer_cb, cb);
        env->timecmp = 0;

        qdev_connect_gpio_out(dev, i,
                              qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
    }

    return dev;
}

/* CPU read [M|S]SWI register */
static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
    unsigned size)
{
    RISCVAclintSwiState *swi = opaque;

    if (addr < (swi->num_harts << 2)) {
        size_t hartid = swi->hartid_base + (addr >> 2);
        CPUState *cpu = qemu_get_cpu(hartid);
        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
        if (!env) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "aclint-swi: invalid hartid: %zu", hartid);
        } else if ((addr & 0x3) == 0) {
            return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
        }
    }

    qemu_log_mask(LOG_UNIMP,
                  "aclint-swi: invalid read: %08x", (uint32_t)addr);
    return 0;
}

/* CPU write [M|S]SWI register */
static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
        unsigned size)
{
    RISCVAclintSwiState *swi = opaque;

    if (addr < (swi->num_harts << 2)) {
        size_t hartid = swi->hartid_base + (addr >> 2);
        CPUState *cpu = qemu_get_cpu(hartid);
        CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
        if (!env) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "aclint-swi: invalid hartid: %zu", hartid);
        } else if ((addr & 0x3) == 0) {
            if (value & 0x1) {
                qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
            } else {
                if (!swi->sswi) {
                    qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
                }
            }
            return;
        }
    }

    qemu_log_mask(LOG_UNIMP,
                  "aclint-swi: invalid write: %08x", (uint32_t)addr);
}

static const MemoryRegionOps riscv_aclint_swi_ops = {
    .read = riscv_aclint_swi_read,
    .write = riscv_aclint_swi_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 4
    }
};

static Property riscv_aclint_swi_properties[] = {
    DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
    DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
    DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
    DEFINE_PROP_END_OF_LIST(),
};

static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
{
    RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
    int i;

    memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
                          TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);

    swi->soft_irqs = g_malloc(sizeof(qemu_irq) * swi->num_harts);
    qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);

    /* Claim software interrupt bits */
    for (i = 0; i < swi->num_harts; i++) {
        RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
        /* We don't claim mip.SSIP because it is writeable by software */
        if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
            error_report("MSIP already claimed");
            exit(1);
        }
    }
}

static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    dc->realize = riscv_aclint_swi_realize;
    device_class_set_props(dc, riscv_aclint_swi_properties);
}

static const TypeInfo riscv_aclint_swi_info = {
    .name          = TYPE_RISCV_ACLINT_SWI,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(RISCVAclintSwiState),
    .class_init    = riscv_aclint_swi_class_init,
};

/*
 * Create ACLINT [M|S]SWI device.
 */
DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
    uint32_t num_harts, bool sswi)
{
    int i;
    DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);

    assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
    assert(!(addr & 0x3));

    qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
    qdev_prop_set_uint32(dev, "num-harts", num_harts);
    qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);

    for (i = 0; i < num_harts; i++) {
        CPUState *cpu = qemu_get_cpu(hartid_base + i);
        RISCVCPU *rvcpu = RISCV_CPU(cpu);

        qdev_connect_gpio_out(dev, i,
                              qdev_get_gpio_in(DEVICE(rvcpu),
                                  (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
    }

    return dev;
}

static void riscv_aclint_register_types(void)
{
    type_register_static(&riscv_aclint_mtimer_info);
    type_register_static(&riscv_aclint_swi_info);
}

type_init(riscv_aclint_register_types)