aboutsummaryrefslogtreecommitdiff
path: root/hw/intc/arm_gicv3_redist.c
blob: d81d8e5f076ada65cd48cf912dcbe35bb3b120b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
 * ARM GICv3 emulation: Redistributor
 *
 * Copyright (c) 2015 Huawei.
 * Copyright (c) 2016 Linaro Limited.
 * Written by Shlomo Pongratz, Peter Maydell
 *
 * This code is licensed under the GPL, version 2 or (at your option)
 * any later version.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "trace.h"
#include "gicv3_internal.h"

static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
{
    /* Return a 32-bit mask which should be applied for this set of 32
     * interrupts; each bit is 1 if access is permitted by the
     * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
     * not affect config register accesses, unlike GICD_NSACR.)
     */
    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
        /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
        return cs->gicr_igroupr0;
    }
    return 0xFFFFFFFFU;
}

static int gicr_ns_access(GICv3CPUState *cs, int irq)
{
    /* Return the 2 bit NSACR.NS_access field for this SGI */
    assert(irq < 16);
    return extract32(cs->gicr_nsacr, irq * 2, 2);
}

static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
                                      uint32_t *reg, uint32_t val)
{
    /* Helper routine to implement writing to a "set-bitmap" register */
    val &= mask_group(cs, attrs);
    *reg |= val;
    gicv3_redist_update(cs);
}

static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
                                        uint32_t *reg, uint32_t val)
{
    /* Helper routine to implement writing to a "clear-bitmap" register */
    val &= mask_group(cs, attrs);
    *reg &= ~val;
    gicv3_redist_update(cs);
}

static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
                                     uint32_t reg)
{
    reg &= mask_group(cs, attrs);
    return reg;
}

static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
                                    int irq)
{
    /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
     * honouring security state (these are RAZ/WI for Group 0 or Secure
     * Group 1 interrupts).
     */
    uint32_t prio;

    prio = cs->gicr_ipriorityr[irq];

    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
        if (!(cs->gicr_igroupr0 & (1U << irq))) {
            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
            return 0;
        }
        /* NS view of the interrupt priority */
        prio = (prio << 1) & 0xff;
    }
    return prio;
}

static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
                                  uint8_t value)
{
    /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
     * honouring security state (these are RAZ/WI for Group 0 or Secure
     * Group 1 interrupts).
     */
    if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
        if (!(cs->gicr_igroupr0 & (1U << irq))) {
            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
            return;
        }
        /* NS view of the interrupt priority */
        value = 0x80 | (value >> 1);
    }
    cs->gicr_ipriorityr[irq] = value;
}

static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
                              uint64_t *data, MemTxAttrs attrs)
{
    switch (offset) {
    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
        *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
                               uint64_t value, MemTxAttrs attrs)
{
    switch (offset) {
    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
        gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
        gicv3_redist_update(cs);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
                              uint64_t *data, MemTxAttrs attrs)
{
    switch (offset) {
    case GICR_CTLR:
        *data = cs->gicr_ctlr;
        return MEMTX_OK;
    case GICR_IIDR:
        *data = gicv3_iidr();
        return MEMTX_OK;
    case GICR_TYPER:
        *data = extract64(cs->gicr_typer, 0, 32);
        return MEMTX_OK;
    case GICR_TYPER + 4:
        *data = extract64(cs->gicr_typer, 32, 32);
        return MEMTX_OK;
    case GICR_STATUSR:
        /* RAZ/WI for us (this is an optional register and our implementation
         * does not track RO/WO/reserved violations to report them to the guest)
         */
        *data = 0;
        return MEMTX_OK;
    case GICR_WAKER:
        *data = cs->gicr_waker;
        return MEMTX_OK;
    case GICR_PROPBASER:
        *data = extract64(cs->gicr_propbaser, 0, 32);
        return MEMTX_OK;
    case GICR_PROPBASER + 4:
        *data = extract64(cs->gicr_propbaser, 32, 32);
        return MEMTX_OK;
    case GICR_PENDBASER:
        *data = extract64(cs->gicr_pendbaser, 0, 32);
        return MEMTX_OK;
    case GICR_PENDBASER + 4:
        *data = extract64(cs->gicr_pendbaser, 32, 32);
        return MEMTX_OK;
    case GICR_IGROUPR0:
        if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
            *data = 0;
            return MEMTX_OK;
        }
        *data = cs->gicr_igroupr0;
        return MEMTX_OK;
    case GICR_ISENABLER0:
    case GICR_ICENABLER0:
        *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
        return MEMTX_OK;
    case GICR_ISPENDR0:
    case GICR_ICPENDR0:
    {
        /* The pending register reads as the logical OR of the pending
         * latch and the input line level for level-triggered interrupts.
         */
        uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
        *data = gicr_read_bitmap_reg(cs, attrs, val);
        return MEMTX_OK;
    }
    case GICR_ISACTIVER0:
    case GICR_ICACTIVER0:
        *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
        return MEMTX_OK;
    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
    {
        int i, irq = offset - GICR_IPRIORITYR;
        uint32_t value = 0;

        for (i = irq + 3; i >= irq; i--) {
            value <<= 8;
            value |= gicr_read_ipriorityr(cs, attrs, i);
        }
        *data = value;
        return MEMTX_OK;
    }
    case GICR_ICFGR0:
    case GICR_ICFGR1:
    {
        /* Our edge_trigger bitmap is one bit per irq; take the correct
         * half of it, and spread it out into the odd bits.
         */
        uint32_t value;

        value = cs->edge_trigger & mask_group(cs, attrs);
        value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
        value = half_shuffle32(value) << 1;
        *data = value;
        return MEMTX_OK;
    }
    case GICR_IGRPMODR0:
        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            *data = 0;
            return MEMTX_OK;
        }
        *data = cs->gicr_igrpmodr0;
        return MEMTX_OK;
    case GICR_NSACR:
        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            *data = 0;
            return MEMTX_OK;
        }
        *data = cs->gicr_nsacr;
        return MEMTX_OK;
    case GICR_IDREGS ... GICR_IDREGS + 0x2f:
        *data = gicv3_idreg(offset - GICR_IDREGS);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
                               uint64_t value, MemTxAttrs attrs)
{
    switch (offset) {
    case GICR_CTLR:
        /* For our implementation, GICR_TYPER.DPGS is 0 and so all
         * the DPG bits are RAZ/WI. We don't do anything asynchronously,
         * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
         * implement LPIs) so Enable_LPIs is programmable.
         */
        if (cs->gicr_typer & GICR_TYPER_PLPIS) {
            if (value & GICR_CTLR_ENABLE_LPIS) {
                cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
                /* Check for any pending interr in pending table */
                gicv3_redist_update_lpi(cs);
            } else {
                cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
                /* cs->hppi might have been an LPI; recalculate */
                gicv3_redist_update(cs);
            }
        }
        return MEMTX_OK;
    case GICR_STATUSR:
        /* RAZ/WI for our implementation */
        return MEMTX_OK;
    case GICR_WAKER:
        /* Only the ProcessorSleep bit is writeable. When the guest sets
         * it it requests that we transition the channel between the
         * redistributor and the cpu interface to quiescent, and that
         * we set the ChildrenAsleep bit once the inteface has reached the
         * quiescent state.
         * Setting the ProcessorSleep to 0 reverses the quiescing, and
         * ChildrenAsleep is cleared once the transition is complete.
         * Since our interface is not asynchronous, we complete these
         * transitions instantaneously, so we set ChildrenAsleep to the
         * same value as ProcessorSleep here.
         */
        value &= GICR_WAKER_ProcessorSleep;
        if (value & GICR_WAKER_ProcessorSleep) {
            value |= GICR_WAKER_ChildrenAsleep;
        }
        cs->gicr_waker = value;
        return MEMTX_OK;
    case GICR_PROPBASER:
        cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
        return MEMTX_OK;
    case GICR_PROPBASER + 4:
        cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
        return MEMTX_OK;
    case GICR_PENDBASER:
        cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
        return MEMTX_OK;
    case GICR_PENDBASER + 4:
        cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
        return MEMTX_OK;
    case GICR_IGROUPR0:
        if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
            return MEMTX_OK;
        }
        cs->gicr_igroupr0 = value;
        gicv3_redist_update(cs);
        return MEMTX_OK;
    case GICR_ISENABLER0:
        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
        return MEMTX_OK;
    case GICR_ICENABLER0:
        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
        return MEMTX_OK;
    case GICR_ISPENDR0:
        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
        return MEMTX_OK;
    case GICR_ICPENDR0:
        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
        return MEMTX_OK;
    case GICR_ISACTIVER0:
        gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
        return MEMTX_OK;
    case GICR_ICACTIVER0:
        gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
        return MEMTX_OK;
    case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
    {
        int i, irq = offset - GICR_IPRIORITYR;

        for (i = irq; i < irq + 4; i++, value >>= 8) {
            gicr_write_ipriorityr(cs, attrs, i, value);
        }
        gicv3_redist_update(cs);
        return MEMTX_OK;
    }
    case GICR_ICFGR0:
        /* Register is all RAZ/WI or RAO/WI bits */
        return MEMTX_OK;
    case GICR_ICFGR1:
    {
        uint32_t mask;

        /* Since our edge_trigger bitmap is one bit per irq, our input
         * 32-bits will compress down into 16 bits which we need
         * to write into the bitmap.
         */
        value = half_unshuffle32(value >> 1) << 16;
        mask = mask_group(cs, attrs) & 0xffff0000U;

        cs->edge_trigger &= ~mask;
        cs->edge_trigger |= (value & mask);

        gicv3_redist_update(cs);
        return MEMTX_OK;
    }
    case GICR_IGRPMODR0:
        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            return MEMTX_OK;
        }
        cs->gicr_igrpmodr0 = value;
        gicv3_redist_update(cs);
        return MEMTX_OK;
    case GICR_NSACR:
        if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            return MEMTX_OK;
        }
        cs->gicr_nsacr = value;
        /* no update required as this only affects access permission checks */
        return MEMTX_OK;
    case GICR_IIDR:
    case GICR_TYPER:
    case GICR_IDREGS ... GICR_IDREGS + 0x2f:
        /* RO registers, ignore the write */
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest write to RO register at offset "
                      TARGET_FMT_plx "\n", __func__, offset);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
                               uint64_t *data, MemTxAttrs attrs)
{
    switch (offset) {
    case GICR_TYPER:
        *data = cs->gicr_typer;
        return MEMTX_OK;
    case GICR_PROPBASER:
        *data = cs->gicr_propbaser;
        return MEMTX_OK;
    case GICR_PENDBASER:
        *data = cs->gicr_pendbaser;
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
                                uint64_t value, MemTxAttrs attrs)
{
    switch (offset) {
    case GICR_PROPBASER:
        cs->gicr_propbaser = value;
        return MEMTX_OK;
    case GICR_PENDBASER:
        cs->gicr_pendbaser = value;
        return MEMTX_OK;
    case GICR_TYPER:
        /* RO register, ignore the write */
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest write to RO register at offset "
                      TARGET_FMT_plx "\n", __func__, offset);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
                              unsigned size, MemTxAttrs attrs)
{
    GICv3RedistRegion *region = opaque;
    GICv3State *s = region->gic;
    GICv3CPUState *cs;
    MemTxResult r;
    int cpuidx;

    assert((offset & (size - 1)) == 0);

    /*
     * There are (for GICv3) two 64K redistributor pages per CPU.
     * In some cases the redistributor pages for all CPUs are not
     * contiguous (eg on the virt board they are split into two
     * parts if there are too many CPUs to all fit in the same place
     * in the memory map); if so then the GIC has multiple MemoryRegions
     * for the redistributors.
     */
    cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
    offset %= GICV3_REDIST_SIZE;

    cs = &s->cpu[cpuidx];

    switch (size) {
    case 1:
        r = gicr_readb(cs, offset, data, attrs);
        break;
    case 4:
        r = gicr_readl(cs, offset, data, attrs);
        break;
    case 8:
        r = gicr_readll(cs, offset, data, attrs);
        break;
    default:
        r = MEMTX_ERROR;
        break;
    }

    if (r != MEMTX_OK) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest read at offset " TARGET_FMT_plx
                      " size %u\n", __func__, offset, size);
        trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
                                   size, attrs.secure);
        /* The spec requires that reserved registers are RAZ/WI;
         * so use MEMTX_ERROR returns from leaf functions as a way to
         * trigger the guest-error logging but don't return it to
         * the caller, or we'll cause a spurious guest data abort.
         */
        r = MEMTX_OK;
        *data = 0;
    } else {
        trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
                                size, attrs.secure);
    }
    return r;
}

MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
                               unsigned size, MemTxAttrs attrs)
{
    GICv3RedistRegion *region = opaque;
    GICv3State *s = region->gic;
    GICv3CPUState *cs;
    MemTxResult r;
    int cpuidx;

    assert((offset & (size - 1)) == 0);

    /*
     * There are (for GICv3) two 64K redistributor pages per CPU.
     * In some cases the redistributor pages for all CPUs are not
     * contiguous (eg on the virt board they are split into two
     * parts if there are too many CPUs to all fit in the same place
     * in the memory map); if so then the GIC has multiple MemoryRegions
     * for the redistributors.
     */
    cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
    offset %= GICV3_REDIST_SIZE;

    cs = &s->cpu[cpuidx];

    switch (size) {
    case 1:
        r = gicr_writeb(cs, offset, data, attrs);
        break;
    case 4:
        r = gicr_writel(cs, offset, data, attrs);
        break;
    case 8:
        r = gicr_writell(cs, offset, data, attrs);
        break;
    default:
        r = MEMTX_ERROR;
        break;
    }

    if (r != MEMTX_OK) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest write at offset " TARGET_FMT_plx
                      " size %u\n", __func__, offset, size);
        trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
                                    size, attrs.secure);
        /* The spec requires that reserved registers are RAZ/WI;
         * so use MEMTX_ERROR returns from leaf functions as a way to
         * trigger the guest-error logging but don't return it to
         * the caller, or we'll cause a spurious guest data abort.
         */
        r = MEMTX_OK;
    } else {
        trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
                                 size, attrs.secure);
    }
    return r;
}

static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
{
    AddressSpace *as = &cs->gic->dma_as;
    uint64_t lpict_baddr;
    uint8_t lpite;
    uint8_t prio;

    lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;

    address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) *
                       sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite,
                       sizeof(lpite));

    if (!(lpite & LPI_CTE_ENABLED)) {
        return;
    }

    if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
        prio = lpite & LPI_PRIORITY_MASK;
    } else {
        prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
    }

    if ((prio < cs->hpplpi.prio) ||
        ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) {
        cs->hpplpi.irq = irq;
        cs->hpplpi.prio = prio;
        /* LPIs are always non-secure Grp1 interrupts */
        cs->hpplpi.grp = GICV3_G1NS;
    }
}

void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
{
    /*
     * This function scans the LPI pending table and for each pending
     * LPI, reads the corresponding entry from LPI configuration table
     * to extract the priority info and determine if the current LPI
     * priority is lower than the last computed high priority lpi interrupt.
     * If yes, replace current LPI as the new high priority lpi interrupt.
     */
    AddressSpace *as = &cs->gic->dma_as;
    uint64_t lpipt_baddr;
    uint32_t pendt_size = 0;
    uint8_t pend;
    int i, bit;
    uint64_t idbits;

    idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
                 GICD_TYPER_IDBITS);

    if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
        return;
    }

    cs->hpplpi.prio = 0xff;

    lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;

    /* Determine the highest priority pending interrupt among LPIs */
    pendt_size = (1ULL << (idbits + 1));

    for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
        address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend,
                           sizeof(pend));

        while (pend) {
            bit = ctz32(pend);
            gicv3_redist_check_lpi_priority(cs, i * 8 + bit);
            pend &= ~(1 << bit);
        }
    }
}

void gicv3_redist_update_lpi(GICv3CPUState *cs)
{
    gicv3_redist_update_lpi_only(cs);
    gicv3_redist_update(cs);
}

void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
{
    /*
     * This function updates the pending bit in lpi pending table for
     * the irq being activated or deactivated.
     */
    AddressSpace *as = &cs->gic->dma_as;
    uint64_t lpipt_baddr;
    bool ispend = false;
    uint8_t pend;

    /*
     * get the bit value corresponding to this irq in the
     * lpi pending table
     */
    lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;

    address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
                       MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));

    ispend = extract32(pend, irq % 8, 1);

    /* no change in the value of pending bit, return */
    if (ispend == level) {
        return;
    }
    pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);

    address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
                        MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));

    /*
     * check if this LPI is better than the current hpplpi, if yes
     * just set hpplpi.prio and .irq without doing a full rescan
     */
    if (level) {
        gicv3_redist_check_lpi_priority(cs, irq);
        gicv3_redist_update(cs);
    } else {
        if (irq == cs->hpplpi.irq) {
            gicv3_redist_update_lpi(cs);
        }
    }
}

void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
{
    uint64_t idbits;

    idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
                 GICD_TYPER_IDBITS);

    if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
        (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
        return;
    }

    /* set/clear the pending bit for this irq */
    gicv3_redist_lpi_pending(cs, irq, level);
}

void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
{
    /* Update redistributor state for a change in an external PPI input line */
    if (level == extract32(cs->level, irq, 1)) {
        return;
    }

    trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);

    cs->level = deposit32(cs->level, irq, 1, level);

    if (level) {
        /* 0->1 edges latch the pending bit for edge-triggered interrupts */
        if (extract32(cs->edge_trigger, irq, 1)) {
            cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
        }
    }

    gicv3_redist_update(cs);
}

void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
{
    /* Update redistributor state for a generated SGI */
    int irqgrp = gicv3_irq_group(cs->gic, cs, irq);

    /* If we are asked for a Secure Group 1 SGI and it's actually
     * configured as Secure Group 0 this is OK (subject to the usual
     * NSACR checks).
     */
    if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
        grp = GICV3_G0;
    }

    if (grp != irqgrp) {
        return;
    }

    if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
        /* If security is enabled we must test the NSACR bits */
        int nsaccess = gicr_ns_access(cs, irq);

        if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
            (irqgrp == GICV3_G1 && nsaccess < 2)) {
            return;
        }
    }

    /* OK, we can accept the SGI */
    trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
    cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
    gicv3_redist_update(cs);
}