aboutsummaryrefslogtreecommitdiff
path: root/hw/intc/arm_gicv3_dist.c
blob: b977ae5984051fa44a1d5a0bd956e659de672d27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/*
 * ARM GICv3 emulation: Distributor
 *
 * Copyright (c) 2015 Huawei.
 * Copyright (c) 2016 Linaro Limited.
 * Written by Shlomo Pongratz, Peter Maydell
 *
 * This code is licensed under the GPL, version 2 or (at your option)
 * any later version.
 */

#include "qemu/osdep.h"
#include "trace.h"
#include "gicv3_internal.h"

/* The GICD_NSACR registers contain a two bit field for each interrupt which
 * allows the guest to give NonSecure code access to registers controlling
 * Secure interrupts:
 *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
 *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
 *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
 *        and w/o to CLRSPI_NSR
 *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
 *
 * Given a (multiple-of-32) interrupt number, these mask functions return
 * a mask word where each bit is 1 if the NSACR settings permit access
 * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
 * word for this set of interrupts to give an overall mask.
 */

typedef uint32_t maskfn(GICv3State *s, int irq);

static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
{
    /* Return a mask where each bit is set if the NSACR field is >= 1 */
    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];

    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
    raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
    return half_unshuffle64(raw_nsacr);
}

static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
{
    /* Return a mask where each bit is set if the NSACR field is >= 2 */
    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];

    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
    raw_nsacr = raw_nsacr >> 1;
    return half_unshuffle64(raw_nsacr);
}

/* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
 * but it would be implemented using:
 *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
 */

static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
                                     maskfn *maskfn, int irq)
{
    /* Return a 32-bit mask which should be applied for this set of 32
     * interrupts; each bit is 1 if access is permitted by the
     * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
     */
    uint32_t mask;

    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
        /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
         * unless the NSACR bits permit access.
         */
        mask = *gic_bmp_ptr32(s->group, irq);
        if (maskfn) {
            mask |= maskfn(s, irq);
        }
        return mask;
    }
    return 0xFFFFFFFFU;
}

static int gicd_ns_access(GICv3State *s, int irq)
{
    /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
     * specified interrupt.
     */
    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return 0;
    }
    return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
}

static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
                                      uint32_t *bmp,
                                      maskfn *maskfn,
                                      int offset, uint32_t val)
{
    /* Helper routine to implement writing to a "set-bitmap" register
     * (GICD_ISENABLER, GICD_ISPENDR, etc).
     * Semantics implemented here:
     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
     * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
     * offset should be the offset in bytes of the register from the start
     * of its group.
     */
    int irq = offset * 8;

    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return;
    }
    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    *gic_bmp_ptr32(bmp, irq) |= val;
    gicv3_update(s, irq, 32);
}

static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
                                        uint32_t *bmp,
                                        maskfn *maskfn,
                                        int offset, uint32_t val)
{
    /* Helper routine to implement writing to a "clear-bitmap" register
     * (GICD_ICENABLER, GICD_ICPENDR, etc).
     * Semantics implemented here:
     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
     * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
     * offset should be the offset in bytes of the register from the start
     * of its group.
     */
    int irq = offset * 8;

    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return;
    }
    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    *gic_bmp_ptr32(bmp, irq) &= ~val;
    gicv3_update(s, irq, 32);
}

static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
                                     uint32_t *bmp,
                                     maskfn *maskfn,
                                     int offset)
{
    /* Helper routine to implement reading a "set/clear-bitmap" register
     * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
     * Semantics implemented here:
     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
     * offset should be the offset in bytes of the register from the start
     * of its group.
     */
    int irq = offset * 8;
    uint32_t val;

    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return 0;
    }
    val = *gic_bmp_ptr32(bmp, irq);
    if (bmp == s->pending) {
        /* The PENDING register is a special case -- for level triggered
         * interrupts, the PENDING state is the logical OR of the state of
         * the PENDING latch with the input line level.
         */
        uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
        uint32_t level = *gic_bmp_ptr32(s->level, irq);
        val |= (~edge & level);
    }
    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
    return val;
}

static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
{
    /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
     * honouring security state (these are RAZ/WI for Group 0 or Secure
     * Group 1 interrupts).
     */
    uint32_t prio;

    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return 0;
    }

    prio = s->gicd_ipriority[irq];

    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
        if (!gicv3_gicd_group_test(s, irq)) {
            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
            return 0;
        }
        /* NS view of the interrupt priority */
        prio = (prio << 1) & 0xff;
    }
    return prio;
}

static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
                                  uint8_t value)
{
    /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
     * honouring security state (these are RAZ/WI for Group 0 or Secure
     * Group 1 interrupts).
     */
    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return;
    }

    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
        if (!gicv3_gicd_group_test(s, irq)) {
            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
            return;
        }
        /* NS view of the interrupt priority */
        value = 0x80 | (value >> 1);
    }
    s->gicd_ipriority[irq] = value;
}

static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
{
    /* Read the value of GICD_IROUTER<n> for the specified interrupt,
     * honouring security state.
     */
    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return 0;
    }

    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
        /* RAZ/WI for NS accesses to secure interrupts */
        if (!gicv3_gicd_group_test(s, irq)) {
            if (gicd_ns_access(s, irq) != 3) {
                return 0;
            }
        }
    }

    return s->gicd_irouter[irq];
}

static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
                               uint64_t val)
{
    /* Write the value of GICD_IROUTER<n> for the specified interrupt,
     * honouring security state.
     */
    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
        return;
    }

    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
        /* RAZ/WI for NS accesses to secure interrupts */
        if (!gicv3_gicd_group_test(s, irq)) {
            if (gicd_ns_access(s, irq) != 3) {
                return;
            }
        }
    }

    s->gicd_irouter[irq] = val;
    gicv3_cache_target_cpustate(s, irq);
    gicv3_update(s, irq, 1);
}

static MemTxResult gicd_readb(GICv3State *s, hwaddr offset,
                              uint64_t *data, MemTxAttrs attrs)
{
    /* Most GICv3 distributor registers do not support byte accesses. */
    switch (offset) {
    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
        /* This GIC implementation always has affinity routing enabled,
         * so these registers are all RAZ/WI.
         */
        return MEMTX_OK;
    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
        *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicd_writeb(GICv3State *s, hwaddr offset,
                               uint64_t value, MemTxAttrs attrs)
{
    /* Most GICv3 distributor registers do not support byte accesses. */
    switch (offset) {
    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
        /* This GIC implementation always has affinity routing enabled,
         * so these registers are all RAZ/WI.
         */
        return MEMTX_OK;
    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    {
        int irq = offset - GICD_IPRIORITYR;

        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            return MEMTX_OK;
        }
        gicd_write_ipriorityr(s, attrs, irq, value);
        gicv3_update(s, irq, 1);
        return MEMTX_OK;
    }
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicd_readw(GICv3State *s, hwaddr offset,
                              uint64_t *data, MemTxAttrs attrs)
{
    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
     * support 16 bit accesses, and those registers are all part of the
     * optional message-based SPI feature which this GIC does not currently
     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
     * reserved.
     */
    return MEMTX_ERROR;
}

static MemTxResult gicd_writew(GICv3State *s, hwaddr offset,
                               uint64_t value, MemTxAttrs attrs)
{
    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
     * support 16 bit accesses, and those registers are all part of the
     * optional message-based SPI feature which this GIC does not currently
     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
     * reserved.
     */
    return MEMTX_ERROR;
}

static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
                              uint64_t *data, MemTxAttrs attrs)
{
    /* Almost all GICv3 distributor registers are 32-bit.
     * Note that WO registers must return an UNKNOWN value on reads,
     * not an abort.
     */

    switch (offset) {
    case GICD_CTLR:
        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
            /* The NS view of the GICD_CTLR sees only certain bits:
             * + bit [31] (RWP) is an alias of the Secure bit [31]
             * + bit [4] (ARE_NS) is an alias of Secure bit [5]
             * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
             *   NS affinity routing is enabled, otherwise RES0
             * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
             *   NS affinity routing is not enabled, otherwise RES0
             * Since for QEMU affinity routing is always enabled
             * for both S and NS this means that bits [4] and [5] are
             * both always 1, and we can simply make the NS view
             * be bits 31, 4 and 1 of the S view.
             */
            *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
                                    GICD_CTLR_EN_GRP1NS |
                                    GICD_CTLR_RWP);
        } else {
            *data = s->gicd_ctlr;
        }
        return MEMTX_OK;
    case GICD_TYPER:
    {
        /* For this implementation:
         * No1N == 1 (1-of-N SPI interrupts not supported)
         * A3V == 1 (non-zero values of Affinity level 3 supported)
         * IDbits == 0xf (we support 16-bit interrupt identifiers)
         * DVIS == 0 (Direct virtual LPI injection not supported)
         * LPIS == 0 (LPIs not supported)
         * MBIS == 0 (message-based SPIs not supported)
         * SecurityExtn == 1 if security extns supported
         * CPUNumber == 0 since for us ARE is always 1
         * ITLinesNumber == (num external irqs / 32) - 1
         */
        int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;

        *data = (1 << 25) | (1 << 24) | (s->security_extn << 10) |
            (0xf << 19) | itlinesnumber;
        return MEMTX_OK;
    }
    case GICD_IIDR:
        /* We claim to be an ARM r0p0 with a zero ProductID.
         * This is the same as an r0p0 GIC-500.
         */
        *data = gicv3_iidr();
        return MEMTX_OK;
    case GICD_STATUSR:
        /* RAZ/WI for us (this is an optional register and our implementation
         * does not track RO/WO/reserved violations to report them to the guest)
         */
        *data = 0;
        return MEMTX_OK;
    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
    {
        int irq;

        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
            *data = 0;
            return MEMTX_OK;
        }
        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
        irq = (offset - GICD_IGROUPR) * 8;
        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            *data = 0;
            return MEMTX_OK;
        }
        *data = *gic_bmp_ptr32(s->group, irq);
        return MEMTX_OK;
    }
    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
                                     offset - GICD_ISENABLER);
        return MEMTX_OK;
    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
                                     offset - GICD_ICENABLER);
        return MEMTX_OK;
    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
                                     offset - GICD_ISPENDR);
        return MEMTX_OK;
    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
                                     offset - GICD_ICPENDR);
        return MEMTX_OK;
    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
                                     offset - GICD_ISACTIVER);
        return MEMTX_OK;
    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
                                     offset - GICD_ICACTIVER);
        return MEMTX_OK;
    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    {
        int i, irq = offset - GICD_IPRIORITYR;
        uint32_t value = 0;

        for (i = irq + 3; i >= irq; i--, value <<= 8) {
            value |= gicd_read_ipriorityr(s, attrs, i);
        }
        *data = value;
        return MEMTX_OK;
    }
    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
        /* RAZ/WI since affinity routing is always enabled */
        *data = 0;
        return MEMTX_OK;
    case GICD_ICFGR ... GICD_ICFGR + 0xff:
    {
        /* Here only the even bits are used; odd bits are RES0 */
        int irq = (offset - GICD_ICFGR) * 4;
        uint32_t value = 0;

        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            *data = 0;
            return MEMTX_OK;
        }

        /* Since our edge_trigger bitmap is one bit per irq, we only need
         * half of the 32-bit word, which we can then spread out
         * into the odd bits.
         */
        value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
        value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
        value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
        value = half_shuffle32(value) << 1;
        *data = value;
        return MEMTX_OK;
    }
    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
    {
        int irq;

        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            *data = 0;
            return MEMTX_OK;
        }
        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
        irq = (offset - GICD_IGRPMODR) * 8;
        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            *data = 0;
            return MEMTX_OK;
        }
        *data = *gic_bmp_ptr32(s->grpmod, irq);
        return MEMTX_OK;
    }
    case GICD_NSACR ... GICD_NSACR + 0xff:
    {
        /* Two bits per interrupt */
        int irq = (offset - GICD_NSACR) * 4;

        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            *data = 0;
            return MEMTX_OK;
        }

        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            *data = 0;
            return MEMTX_OK;
        }

        *data = s->gicd_nsacr[irq / 16];
        return MEMTX_OK;
    }
    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
        /* RAZ/WI since affinity routing is always enabled */
        *data = 0;
        return MEMTX_OK;
    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    {
        uint64_t r;
        int irq = (offset - GICD_IROUTER) / 8;

        r = gicd_read_irouter(s, attrs, irq);
        if (offset & 7) {
            *data = r >> 32;
        } else {
            *data = (uint32_t)r;
        }
        return MEMTX_OK;
    }
    case GICD_IDREGS ... GICD_IDREGS + 0x1f:
        /* ID registers */
        *data = gicv3_idreg(offset - GICD_IDREGS);
        return MEMTX_OK;
    case GICD_SGIR:
        /* WO registers, return unknown value */
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest read from WO register at offset "
                      TARGET_FMT_plx "\n", __func__, offset);
        *data = 0;
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
                               uint64_t value, MemTxAttrs attrs)
{
    /* Almost all GICv3 distributor registers are 32-bit. Note that
     * RO registers must ignore writes, not abort.
     */

    switch (offset) {
    case GICD_CTLR:
    {
        uint32_t mask;
        /* GICv3 5.3.20 */
        if (s->gicd_ctlr & GICD_CTLR_DS) {
            /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
             * ARE is RAO/WI (affinity routing always on), and only
             * bits 0 and 1 (group enables) are writable.
             */
            mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
        } else {
            if (attrs.secure) {
                /* for secure access:
                 * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
                 * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
                 *
                 * We can only modify bits[2:0] (the group enables).
                 */
                mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
            } else {
                /* For non secure access ARE_NS is RAO/WI and EnableGrp1
                 * is RES0. The only writable bit is [1] (EnableGrp1A), which
                 * is an alias of the Secure bit [1].
                 */
                mask = GICD_CTLR_EN_GRP1NS;
            }
        }
        s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
        if (value & mask & GICD_CTLR_DS) {
            /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
             * Note that this is a one-way transition because if DS is set
             * then it's not writeable, so it can only go back to 0 with a
             * hardware reset.
             */
            s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
        }
        gicv3_full_update(s);
        return MEMTX_OK;
    }
    case GICD_STATUSR:
        /* RAZ/WI for our implementation */
        return MEMTX_OK;
    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
    {
        int irq;

        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
            return MEMTX_OK;
        }
        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
        irq = (offset - GICD_IGROUPR) * 8;
        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            return MEMTX_OK;
        }
        *gic_bmp_ptr32(s->group, irq) = value;
        gicv3_update(s, irq, 32);
        return MEMTX_OK;
    }
    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
        gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
                                  offset - GICD_ISENABLER, value);
        return MEMTX_OK;
    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
        gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
                                    offset - GICD_ICENABLER, value);
        return MEMTX_OK;
    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
        gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
                                  offset - GICD_ISPENDR, value);
        return MEMTX_OK;
    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
        gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
                                    offset - GICD_ICPENDR, value);
        return MEMTX_OK;
    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
        gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
                                  offset - GICD_ISACTIVER, value);
        return MEMTX_OK;
    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
        gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
                                    offset - GICD_ICACTIVER, value);
        return MEMTX_OK;
    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
    {
        int i, irq = offset - GICD_IPRIORITYR;

        if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
            return MEMTX_OK;
        }

        for (i = irq; i < irq + 4; i++, value >>= 8) {
            gicd_write_ipriorityr(s, attrs, i, value);
        }
        gicv3_update(s, irq, 4);
        return MEMTX_OK;
    }
    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
        /* RAZ/WI since affinity routing is always enabled */
        return MEMTX_OK;
    case GICD_ICFGR ... GICD_ICFGR + 0xff:
    {
        /* Here only the odd bits are used; even bits are RES0 */
        int irq = (offset - GICD_ICFGR) * 4;
        uint32_t mask, oldval;

        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            return MEMTX_OK;
        }

        /* Since our edge_trigger bitmap is one bit per irq, our input
         * 32-bits will compress down into 16 bits which we need
         * to write into the bitmap.
         */
        value = half_unshuffle32(value >> 1);
        mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
        if (irq & 0x1f) {
            value <<= 16;
            mask &= 0xffff0000U;
        } else {
            mask &= 0xffff;
        }
        oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
        value = (oldval & ~mask) | (value & mask);
        *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
        return MEMTX_OK;
    }
    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
    {
        int irq;

        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            return MEMTX_OK;
        }
        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
        irq = (offset - GICD_IGRPMODR) * 8;
        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            return MEMTX_OK;
        }
        *gic_bmp_ptr32(s->grpmod, irq) = value;
        gicv3_update(s, irq, 32);
        return MEMTX_OK;
    }
    case GICD_NSACR ... GICD_NSACR + 0xff:
    {
        /* Two bits per interrupt */
        int irq = (offset - GICD_NSACR) * 4;

        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            return MEMTX_OK;
        }

        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
            /* RAZ/WI if security disabled, or if
             * security enabled and this is an NS access
             */
            return MEMTX_OK;
        }

        s->gicd_nsacr[irq / 16] = value;
        /* No update required as this only affects access permission checks */
        return MEMTX_OK;
    }
    case GICD_SGIR:
        /* RES0 if affinity routing is enabled */
        return MEMTX_OK;
    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
        /* RAZ/WI since affinity routing is always enabled */
        return MEMTX_OK;
    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
    {
        uint64_t r;
        int irq = (offset - GICD_IROUTER) / 8;

        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
            return MEMTX_OK;
        }

        /* Write half of the 64-bit register */
        r = gicd_read_irouter(s, attrs, irq);
        r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
        gicd_write_irouter(s, attrs, irq, r);
        return MEMTX_OK;
    }
    case GICD_IDREGS ... GICD_IDREGS + 0x1f:
    case GICD_TYPER:
    case GICD_IIDR:
        /* RO registers, ignore the write */
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest write to RO register at offset "
                      TARGET_FMT_plx "\n", __func__, offset);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicd_writell(GICv3State *s, hwaddr offset,
                                uint64_t value, MemTxAttrs attrs)
{
    /* Our only 64-bit registers are GICD_IROUTER<n> */
    int irq;

    switch (offset) {
    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
        irq = (offset - GICD_IROUTER) / 8;
        gicd_write_irouter(s, attrs, irq, value);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

static MemTxResult gicd_readll(GICv3State *s, hwaddr offset,
                               uint64_t *data, MemTxAttrs attrs)
{
    /* Our only 64-bit registers are GICD_IROUTER<n> */
    int irq;

    switch (offset) {
    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
        irq = (offset - GICD_IROUTER) / 8;
        *data = gicd_read_irouter(s, attrs, irq);
        return MEMTX_OK;
    default:
        return MEMTX_ERROR;
    }
}

MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
                            unsigned size, MemTxAttrs attrs)
{
    GICv3State *s = (GICv3State *)opaque;
    MemTxResult r;

    switch (size) {
    case 1:
        r = gicd_readb(s, offset, data, attrs);
        break;
    case 2:
        r = gicd_readw(s, offset, data, attrs);
        break;
    case 4:
        r = gicd_readl(s, offset, data, attrs);
        break;
    case 8:
        r = gicd_readll(s, offset, data, attrs);
        break;
    default:
        r = MEMTX_ERROR;
        break;
    }

    if (r == MEMTX_ERROR) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest read at offset " TARGET_FMT_plx
                      "size %u\n", __func__, offset, size);
        trace_gicv3_dist_badread(offset, size, attrs.secure);
    } else {
        trace_gicv3_dist_read(offset, *data, size, attrs.secure);
    }
    return r;
}

MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
                             unsigned size, MemTxAttrs attrs)
{
    GICv3State *s = (GICv3State *)opaque;
    MemTxResult r;

    switch (size) {
    case 1:
        r = gicd_writeb(s, offset, data, attrs);
        break;
    case 2:
        r = gicd_writew(s, offset, data, attrs);
        break;
    case 4:
        r = gicd_writel(s, offset, data, attrs);
        break;
    case 8:
        r = gicd_writell(s, offset, data, attrs);
        break;
    default:
        r = MEMTX_ERROR;
        break;
    }

    if (r == MEMTX_ERROR) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: invalid guest write at offset " TARGET_FMT_plx
                      "size %u\n", __func__, offset, size);
        trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
    } else {
        trace_gicv3_dist_write(offset, data, size, attrs.secure);
    }
    return r;
}

void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
{
    /* Update distributor state for a change in an external SPI input line */
    if (level == gicv3_gicd_level_test(s, irq)) {
        return;
    }

    trace_gicv3_dist_set_irq(irq, level);

    gicv3_gicd_level_replace(s, irq, level);

    if (level) {
        /* 0->1 edges latch the pending bit for edge-triggered interrupts */
        if (gicv3_gicd_edge_trigger_test(s, irq)) {
            gicv3_gicd_pending_set(s, irq);
        }
    }

    gicv3_update(s, irq, 1);
}