aboutsummaryrefslogtreecommitdiff
path: root/hw/intc/arm_gicv3.c
blob: 3f24707838cb75360d8725e55582b131e36a1380 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
 * ARM Generic Interrupt Controller v3
 *
 * Copyright (c) 2015 Huawei.
 * Copyright (c) 2016 Linaro Limited
 * Written by Shlomo Pongratz, Peter Maydell
 *
 * This code is licensed under the GPL, version 2 or (at your option)
 * any later version.
 */

/* This file contains implementation code for an interrupt controller
 * which implements the GICv3 architecture. Specifically this is where
 * the device class itself and the functions for handling interrupts
 * coming in and going out live.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "hw/intc/arm_gicv3.h"
#include "gicv3_internal.h"

static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
{
    /* Return true if this IRQ at this priority should take
     * precedence over the current recorded highest priority
     * pending interrupt for this CPU. We also return true if
     * the current recorded highest priority pending interrupt
     * is the same as this one (a property which the calling code
     * relies on).
     */
    if (prio < cs->hppi.prio) {
        return true;
    }
    /* If multiple pending interrupts have the same priority then it is an
     * IMPDEF choice which of them to signal to the CPU. We choose to
     * signal the one with the lowest interrupt number.
     */
    if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
        return true;
    }
    return false;
}

static uint32_t gicd_int_pending(GICv3State *s, int irq)
{
    /* Recalculate which distributor interrupts are actually pending
     * in the group of 32 interrupts starting at irq (which should be a multiple
     * of 32), and return a 32-bit integer which has a bit set for each
     * interrupt that is eligible to be signaled to the CPU interface.
     *
     * An interrupt is pending if:
     *  + the PENDING latch is set OR it is level triggered and the input is 1
     *  + its ENABLE bit is set
     *  + the GICD enable bit for its group is set
     *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
     * Conveniently we can bulk-calculate this with bitwise operations.
     */
    uint32_t pend, grpmask;
    uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
    uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
    uint32_t level = *gic_bmp_ptr32(s->level, irq);
    uint32_t group = *gic_bmp_ptr32(s->group, irq);
    uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
    uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
    uint32_t active = *gic_bmp_ptr32(s->active, irq);

    pend = pending | (~edge_trigger & level);
    pend &= enable;
    pend &= ~active;

    if (s->gicd_ctlr & GICD_CTLR_DS) {
        grpmod = 0;
    }

    grpmask = 0;
    if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
        grpmask |= group;
    }
    if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
        grpmask |= (~group & grpmod);
    }
    if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
        grpmask |= (~group & ~grpmod);
    }
    pend &= grpmask;

    return pend;
}

static uint32_t gicr_int_pending(GICv3CPUState *cs)
{
    /* Recalculate which redistributor interrupts are actually pending,
     * and return a 32-bit integer which has a bit set for each interrupt
     * that is eligible to be signaled to the CPU interface.
     *
     * An interrupt is pending if:
     *  + the PENDING latch is set OR it is level triggered and the input is 1
     *  + its ENABLE bit is set
     *  + the GICD enable bit for its group is set
     *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
     * Conveniently we can bulk-calculate this with bitwise operations.
     */
    uint32_t pend, grpmask, grpmod;

    pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
    pend &= cs->gicr_ienabler0;
    pend &= ~cs->gicr_iactiver0;

    if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
        grpmod = 0;
    } else {
        grpmod = cs->gicr_igrpmodr0;
    }

    grpmask = 0;
    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
        grpmask |= cs->gicr_igroupr0;
    }
    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
        grpmask |= (~cs->gicr_igroupr0 & grpmod);
    }
    if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
        grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
    }
    pend &= grpmask;

    return pend;
}

/* Update the interrupt status after state in a redistributor
 * or CPU interface has changed, but don't tell the CPU i/f.
 */
static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
{
    /* Find the highest priority pending interrupt among the
     * redistributor interrupts (SGIs and PPIs).
     */
    bool seenbetter = false;
    uint8_t prio;
    int i;
    uint32_t pend;

    /* Find out which redistributor interrupts are eligible to be
     * signaled to the CPU interface.
     */
    pend = gicr_int_pending(cs);

    if (pend) {
        for (i = 0; i < GIC_INTERNAL; i++) {
            if (!(pend & (1 << i))) {
                continue;
            }
            prio = cs->gicr_ipriorityr[i];
            if (irqbetter(cs, i, prio)) {
                cs->hppi.irq = i;
                cs->hppi.prio = prio;
                seenbetter = true;
            }
        }
    }

    if (seenbetter) {
        cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
    }

    if ((cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) && cs->gic->lpi_enable &&
        (cs->hpplpi.prio != 0xff)) {
        if (irqbetter(cs, cs->hpplpi.irq, cs->hpplpi.prio)) {
            cs->hppi.irq = cs->hpplpi.irq;
            cs->hppi.prio = cs->hpplpi.prio;
            cs->hppi.grp = cs->hpplpi.grp;
            seenbetter = true;
        }
    }

    /* If the best interrupt we just found would preempt whatever
     * was the previous best interrupt before this update, then
     * we know it's definitely the best one now.
     * If we didn't find an interrupt that would preempt the previous
     * best, and the previous best is outside our range (or there was no
     * previous pending interrupt at all), then that is still valid, and
     * we leave it as the best.
     * Otherwise, we need to do a full update (because the previous best
     * interrupt has reduced in priority and any other interrupt could
     * now be the new best one).
     */
    if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) {
        gicv3_full_update_noirqset(cs->gic);
    }
}

/* Update the GIC status after state in a redistributor or
 * CPU interface has changed, and inform the CPU i/f of
 * its new highest priority pending interrupt.
 */
void gicv3_redist_update(GICv3CPUState *cs)
{
    gicv3_redist_update_noirqset(cs);
    gicv3_cpuif_update(cs);
}

/* Update the GIC status after state in the distributor has
 * changed affecting @len interrupts starting at @start,
 * but don't tell the CPU i/f.
 */
static void gicv3_update_noirqset(GICv3State *s, int start, int len)
{
    int i;
    uint8_t prio;
    uint32_t pend = 0;

    assert(start >= GIC_INTERNAL);
    assert(len > 0);

    for (i = 0; i < s->num_cpu; i++) {
        s->cpu[i].seenbetter = false;
    }

    /* Find the highest priority pending interrupt in this range. */
    for (i = start; i < start + len; i++) {
        GICv3CPUState *cs;

        if (i == start || (i & 0x1f) == 0) {
            /* Calculate the next 32 bits worth of pending status */
            pend = gicd_int_pending(s, i & ~0x1f);
        }

        if (!(pend & (1 << (i & 0x1f)))) {
            continue;
        }
        cs = s->gicd_irouter_target[i];
        if (!cs) {
            /* Interrupts targeting no implemented CPU should remain pending
             * and not be forwarded to any CPU.
             */
            continue;
        }
        prio = s->gicd_ipriority[i];
        if (irqbetter(cs, i, prio)) {
            cs->hppi.irq = i;
            cs->hppi.prio = prio;
            cs->seenbetter = true;
        }
    }

    /* If the best interrupt we just found would preempt whatever
     * was the previous best interrupt before this update, then
     * we know it's definitely the best one now.
     * If we didn't find an interrupt that would preempt the previous
     * best, and the previous best is outside our range (or there was
     * no previous pending interrupt at all), then that
     * is still valid, and we leave it as the best.
     * Otherwise, we need to do a full update (because the previous best
     * interrupt has reduced in priority and any other interrupt could
     * now be the new best one).
     */
    for (i = 0; i < s->num_cpu; i++) {
        GICv3CPUState *cs = &s->cpu[i];

        if (cs->seenbetter) {
            cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
        }

        if (!cs->seenbetter && cs->hppi.prio != 0xff &&
            cs->hppi.irq >= start && cs->hppi.irq < start + len) {
            gicv3_full_update_noirqset(s);
            break;
        }
    }
}

void gicv3_update(GICv3State *s, int start, int len)
{
    int i;

    gicv3_update_noirqset(s, start, len);
    for (i = 0; i < s->num_cpu; i++) {
        gicv3_cpuif_update(&s->cpu[i]);
    }
}

void gicv3_full_update_noirqset(GICv3State *s)
{
    /* Completely recalculate the GIC status from scratch, but
     * don't update any outbound IRQ lines.
     */
    int i;

    for (i = 0; i < s->num_cpu; i++) {
        s->cpu[i].hppi.prio = 0xff;
    }

    /* Note that we can guarantee that these functions will not
     * recursively call back into gicv3_full_update(), because
     * at each point the "previous best" is always outside the
     * range we ask them to update.
     */
    gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);

    for (i = 0; i < s->num_cpu; i++) {
        gicv3_redist_update_noirqset(&s->cpu[i]);
    }
}

void gicv3_full_update(GICv3State *s)
{
    /* Completely recalculate the GIC status from scratch, including
     * updating outbound IRQ lines.
     */
    int i;

    gicv3_full_update_noirqset(s);
    for (i = 0; i < s->num_cpu; i++) {
        gicv3_cpuif_update(&s->cpu[i]);
    }
}

/* Process a change in an external IRQ input. */
static void gicv3_set_irq(void *opaque, int irq, int level)
{
    /* Meaning of the 'irq' parameter:
     *  [0..N-1] : external interrupts
     *  [N..N+31] : PPI (internal) interrupts for CPU 0
     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
     *  ...
     */
    GICv3State *s = opaque;

    if (irq < (s->num_irq - GIC_INTERNAL)) {
        /* external interrupt (SPI) */
        gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level);
    } else {
        /* per-cpu interrupt (PPI) */
        int cpu;

        irq -= (s->num_irq - GIC_INTERNAL);
        cpu = irq / GIC_INTERNAL;
        irq %= GIC_INTERNAL;
        assert(cpu < s->num_cpu);
        /* Raising SGIs via this function would be a bug in how the board
         * model wires up interrupts.
         */
        assert(irq >= GIC_NR_SGIS);
        gicv3_redist_set_irq(&s->cpu[cpu], irq, level);
    }
}

static void arm_gicv3_post_load(GICv3State *s)
{
    int i;
    /* Recalculate our cached idea of the current highest priority
     * pending interrupt, but don't set IRQ or FIQ lines.
     */
    for (i = 0; i < s->num_cpu; i++) {
        gicv3_redist_update_lpi(&s->cpu[i]);
    }
    gicv3_full_update_noirqset(s);
    /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
    gicv3_cache_all_target_cpustates(s);
}

static const MemoryRegionOps gic_ops[] = {
    {
        .read_with_attrs = gicv3_dist_read,
        .write_with_attrs = gicv3_dist_write,
        .endianness = DEVICE_NATIVE_ENDIAN,
    },
    {
        .read_with_attrs = gicv3_redist_read,
        .write_with_attrs = gicv3_redist_write,
        .endianness = DEVICE_NATIVE_ENDIAN,
    }
};

static void arm_gic_realize(DeviceState *dev, Error **errp)
{
    /* Device instance realize function for the GIC sysbus device */
    GICv3State *s = ARM_GICV3(dev);
    ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
    Error *local_err = NULL;

    agc->parent_realize(dev, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    if (s->nb_redist_regions != 1) {
        error_setg(errp, "VGICv3 redist region number(%d) not equal to 1",
                   s->nb_redist_regions);
        return;
    }

    gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    gicv3_init_cpuif(s);
}

static void arm_gicv3_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
    ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);

    agcc->post_load = arm_gicv3_post_load;
    device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
}

static const TypeInfo arm_gicv3_info = {
    .name = TYPE_ARM_GICV3,
    .parent = TYPE_ARM_GICV3_COMMON,
    .instance_size = sizeof(GICv3State),
    .class_init = arm_gicv3_class_init,
    .class_size = sizeof(ARMGICv3Class),
};

static void arm_gicv3_register_types(void)
{
    type_register_static(&arm_gicv3_info);
}

type_init(arm_gicv3_register_types)