aboutsummaryrefslogtreecommitdiff
path: root/hw/i2c/smbus_eeprom.c
blob: 5adf3b15b5058be54d804be8701e98dd06e21f4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
 * QEMU SMBus EEPROM device
 *
 * Copyright (c) 2007 Arastra, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/i2c/i2c.h"
#include "hw/i2c/smbus_slave.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "hw/i2c/smbus_eeprom.h"

//#define DEBUG

#define TYPE_SMBUS_EEPROM "smbus-eeprom"

#define SMBUS_EEPROM(obj) \
    OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)

#define SMBUS_EEPROM_SIZE 256

typedef struct SMBusEEPROMDevice {
    SMBusDevice smbusdev;
    uint8_t data[SMBUS_EEPROM_SIZE];
    uint8_t *init_data;
    uint8_t offset;
    bool accessed;
} SMBusEEPROMDevice;

static uint8_t eeprom_receive_byte(SMBusDevice *dev)
{
    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
    uint8_t *data = eeprom->data;
    uint8_t val = data[eeprom->offset++];

    eeprom->accessed = true;
#ifdef DEBUG
    printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
           dev->i2c.address, val);
#endif
    return val;
}

static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
{
    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
    uint8_t *data = eeprom->data;

    eeprom->accessed = true;
#ifdef DEBUG
    printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
           dev->i2c.address, buf[0], buf[1]);
#endif
    /* len is guaranteed to be > 0 */
    eeprom->offset = buf[0];
    buf++;
    len--;

    for (; len > 0; len--) {
        data[eeprom->offset] = *buf++;
        eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
    }

    return 0;
}

static bool smbus_eeprom_vmstate_needed(void *opaque)
{
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
    SMBusEEPROMDevice *eeprom = opaque;

    return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
        !mc->smbus_no_migration_support;
}

static const VMStateDescription vmstate_smbus_eeprom = {
    .name = "smbus-eeprom",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = smbus_eeprom_vmstate_needed,
    .fields      = (VMStateField[]) {
        VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
        VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
        VMSTATE_UINT8(offset, SMBusEEPROMDevice),
        VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
        VMSTATE_END_OF_LIST()
    }
};

/*
 * Reset the EEPROM contents to the initial state on a reset.  This
 * isn't really how an EEPROM works, of course, but the general
 * principle of QEMU is to restore function on reset to what it would
 * be if QEMU was stopped and started.
 *
 * The proper thing to do would be to have a backing blockdev to hold
 * the contents and restore that on startup, and not do this on reset.
 * But until that time, act as if we had been stopped and restarted.
 */
static void smbus_eeprom_reset(DeviceState *dev)
{
    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);

    memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
    eeprom->offset = 0;
}

static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
{
    SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);

    smbus_eeprom_reset(dev);
    if (eeprom->init_data == NULL) {
        error_setg(errp, "init_data cannot be NULL");
    }
}

static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);

    dc->realize = smbus_eeprom_realize;
    dc->reset = smbus_eeprom_reset;
    sc->receive_byte = eeprom_receive_byte;
    sc->write_data = eeprom_write_data;
    dc->vmsd = &vmstate_smbus_eeprom;
    /* Reason: init_data */
    dc->user_creatable = false;
}

static const TypeInfo smbus_eeprom_info = {
    .name          = TYPE_SMBUS_EEPROM,
    .parent        = TYPE_SMBUS_DEVICE,
    .instance_size = sizeof(SMBusEEPROMDevice),
    .class_init    = smbus_eeprom_class_initfn,
};

static void smbus_eeprom_register_types(void)
{
    type_register_static(&smbus_eeprom_info);
}

type_init(smbus_eeprom_register_types)

void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
{
    DeviceState *dev;

    dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM);
    qdev_prop_set_uint8(dev, "address", address);
    /* FIXME: use an array of byte or block backend property? */
    SMBUS_EEPROM(dev)->init_data = eeprom_buf;
    qdev_init_nofail(dev);
}

void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
                       const uint8_t *eeprom_spd, int eeprom_spd_size)
{
    int i;
     /* XXX: make this persistent */

    assert(nb_eeprom <= 8);
    uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
    if (eeprom_spd_size > 0) {
        memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
    }

    for (i = 0; i < nb_eeprom; i++) {
        smbus_eeprom_init_one(smbus, 0x50 + i,
                              eeprom_buf + (i * SMBUS_EEPROM_SIZE));
    }
}

/* Generate SDRAM SPD EEPROM data describing a module of type and size */
uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
                           Error **errp)
{
    uint8_t *spd;
    uint8_t nbanks;
    uint16_t density;
    uint32_t size;
    int min_log2, max_log2, sz_log2;
    int i;

    switch (type) {
    case SDR:
        min_log2 = 2;
        max_log2 = 9;
        break;
    case DDR:
        min_log2 = 5;
        max_log2 = 12;
        break;
    case DDR2:
        min_log2 = 7;
        max_log2 = 14;
        break;
    default:
        g_assert_not_reached();
    }
    size = ram_size >> 20; /* work in terms of megabytes */
    if (size < 4) {
        error_setg(errp, "SDRAM size is too small");
        return NULL;
    }
    sz_log2 = 31 - clz32(size);
    size = 1U << sz_log2;
    if (ram_size > size * MiB) {
        error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
                   "truncating to %u MB", ram_size, size);
    }
    if (sz_log2 < min_log2) {
        error_setg(errp,
                   "Memory size is too small for SDRAM type, adjusting type");
        if (size >= 32) {
            type = DDR;
            min_log2 = 5;
            max_log2 = 12;
        } else {
            type = SDR;
            min_log2 = 2;
            max_log2 = 9;
        }
    }

    nbanks = 1;
    while (sz_log2 > max_log2 && nbanks < 8) {
        sz_log2--;
        nbanks++;
    }

    if (size > (1ULL << sz_log2) * nbanks) {
        error_setg(errp, "Memory size is too big for SDRAM, truncating");
    }

    /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
    if (nbanks == 1 && sz_log2 > min_log2) {
        sz_log2--;
        nbanks++;
    }

    density = 1ULL << (sz_log2 - 2);
    switch (type) {
    case DDR2:
        density = (density & 0xe0) | (density >> 8 & 0x1f);
        break;
    case DDR:
        density = (density & 0xf8) | (density >> 8 & 0x07);
        break;
    case SDR:
    default:
        density &= 0xff;
        break;
    }

    spd = g_malloc0(256);
    spd[0] = 128;   /* data bytes in EEPROM */
    spd[1] = 8;     /* log2 size of EEPROM */
    spd[2] = type;
    spd[3] = 13;    /* row address bits */
    spd[4] = 10;    /* column address bits */
    spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
    spd[6] = 64;    /* module data width */
                    /* reserved / data width high */
    spd[8] = 4;     /* interface voltage level */
    spd[9] = 0x25;  /* highest CAS latency */
    spd[10] = 1;    /* access time */
                    /* DIMM configuration 0 = non-ECC */
    spd[12] = 0x82; /* refresh requirements */
    spd[13] = 8;    /* primary SDRAM width */
                    /* ECC SDRAM width */
    spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
    spd[16] = 12;   /* burst lengths supported */
    spd[17] = 4;    /* banks per SDRAM device */
    spd[18] = 12;   /* ~CAS latencies supported */
    spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
    spd[20] = 2;    /* DIMM type / ~WE latencies */
                    /* module features */
                    /* memory chip features */
    spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
                    /* data access time */
                    /* clock cycle time @ short CAS latency */
                    /* data access time */
    spd[27] = 20;   /* min. row precharge time */
    spd[28] = 15;   /* min. row active row delay */
    spd[29] = 20;   /* min. ~RAS to ~CAS delay */
    spd[30] = 45;   /* min. active to precharge time */
    spd[31] = density;
    spd[32] = 20;   /* addr/cmd setup time */
    spd[33] = 8;    /* addr/cmd hold time */
    spd[34] = 20;   /* data input setup time */
    spd[35] = 8;    /* data input hold time */

    /* checksum */
    for (i = 0; i < 63; i++) {
        spd[63] += spd[i];
    }
    return spd;
}