aboutsummaryrefslogtreecommitdiff
path: root/hw/etraxfs_eth.c
blob: 68b8de38eb6cf1e109a3683f048432e34dcb5696 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
 * QEMU ETRAX Ethernet Controller.
 *
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include "hw.h"
#include "net.h"
#include "etraxfs.h"

#define D(x)

/* Advertisement control register. */
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */

/* 
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
 * linux driver (PHYID and Diagnostics reg).
 * TODO: Add friendly names for the register nums.
 */
struct qemu_phy
{
	uint32_t regs[32];

	int link;

	unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
	void (*write)(struct qemu_phy *phy, unsigned int req, 
		      unsigned int data);
};

static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
{
	int regnum;
	unsigned r = 0;

	regnum = req & 0x1f;

	switch (regnum) {
		case 1:
			if (!phy->link)
				break;
			/* MR1.	 */
			/* Speeds and modes.  */
			r |= (1 << 13) | (1 << 14);
			r |= (1 << 11) | (1 << 12);
			r |= (1 << 5); /* Autoneg complete.  */
			r |= (1 << 3); /* Autoneg able.	 */
			r |= (1 << 2); /* link.	 */
			break;
		case 5:
			/* Link partner ability.
			   We are kind; always agree with whatever best mode
			   the guest advertises.  */
			r = 1 << 14; /* Success.  */
			/* Copy advertised modes.  */
			r |= phy->regs[4] & (15 << 5);
			/* Autoneg support.  */
			r |= 1;
			break;
		case 18:
		{
			/* Diagnostics reg.  */
			int duplex = 0;
			int speed_100 = 0;

			if (!phy->link)
				break;

			/* Are we advertising 100 half or 100 duplex ? */
			speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
			speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);

			/* Are we advertising 10 duplex or 100 duplex ? */
			duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
			duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
			r = (speed_100 << 10) | (duplex << 11);
		}
		break;

		default:
			r = phy->regs[regnum];
			break;
	}
	D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
	return r;
}

static void 
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
{
	int regnum;

	regnum = req & 0x1f;
	D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
	switch (regnum) {
		default:
			phy->regs[regnum] = data;
			break;
	}
}

static void 
tdk_init(struct qemu_phy *phy)
{
	phy->regs[0] = 0x3100;
	/* PHY Id.  */
	phy->regs[2] = 0x0300;
	phy->regs[3] = 0xe400;
	/* Autonegotiation advertisement reg.  */
	phy->regs[4] = 0x01E1;
	phy->link = 1;

	phy->read = tdk_read;
	phy->write = tdk_write;
}

struct qemu_mdio
{
	/* bus.	 */
	int mdc;
	int mdio;

	/* decoder.  */
	enum {
		PREAMBLE,
		SOF,
		OPC,
		ADDR,
		REQ,
		TURNAROUND,
		DATA
	} state;
	unsigned int drive;

	unsigned int cnt;
	unsigned int addr;
	unsigned int opc;
	unsigned int req;
	unsigned int data;

	struct qemu_phy *devs[32];
};

static void 
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
	bus->devs[addr & 0x1f] = phy;
}

#ifdef USE_THIS_DEAD_CODE
static void 
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
	bus->devs[addr & 0x1f] = NULL;	
}
#endif

static void mdio_read_req(struct qemu_mdio *bus)
{
	struct qemu_phy *phy;

	phy = bus->devs[bus->addr];
	if (phy && phy->read)
		bus->data = phy->read(phy, bus->req);
	else 
		bus->data = 0xffff;
}

static void mdio_write_req(struct qemu_mdio *bus)
{
	struct qemu_phy *phy;

	phy = bus->devs[bus->addr];
	if (phy && phy->write)
		phy->write(phy, bus->req, bus->data);
}

static void mdio_cycle(struct qemu_mdio *bus)
{
	bus->cnt++;

	D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
		bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
#if 0
	if (bus->mdc)
		printf("%d", bus->mdio);
#endif
	switch (bus->state)
	{
		case PREAMBLE:
			if (bus->mdc) {
				if (bus->cnt >= (32 * 2) && !bus->mdio) {
					bus->cnt = 0;
					bus->state = SOF;
					bus->data = 0;
				}
			}
			break;
		case SOF:
			if (bus->mdc) {
				if (bus->mdio != 1)
					printf("WARNING: no SOF\n");
				if (bus->cnt == 1*2) {
					bus->cnt = 0;
					bus->opc = 0;
					bus->state = OPC;
				}
			}
			break;
		case OPC:
			if (bus->mdc) {
				bus->opc <<= 1;
				bus->opc |= bus->mdio & 1;
				if (bus->cnt == 2*2) {
					bus->cnt = 0;
					bus->addr = 0;
					bus->state = ADDR;
				}
			}
			break;
		case ADDR:
			if (bus->mdc) {
				bus->addr <<= 1;
				bus->addr |= bus->mdio & 1;

				if (bus->cnt == 5*2) {
					bus->cnt = 0;
					bus->req = 0;
					bus->state = REQ;
				}
			}
			break;
		case REQ:
			if (bus->mdc) {
				bus->req <<= 1;
				bus->req |= bus->mdio & 1;
				if (bus->cnt == 5*2) {
					bus->cnt = 0;
					bus->state = TURNAROUND;
				}
			}
			break;
		case TURNAROUND:
			if (bus->mdc && bus->cnt == 2*2) {
				bus->mdio = 0;
				bus->cnt = 0;

				if (bus->opc == 2) {
					bus->drive = 1;
					mdio_read_req(bus);
					bus->mdio = bus->data & 1;
				}
				bus->state = DATA;
			}
			break;
		case DATA:			
			if (!bus->mdc) {
				if (bus->drive) {
					bus->mdio = !!(bus->data & (1 << 15));
					bus->data <<= 1;
				}
			} else {
				if (!bus->drive) {
					bus->data <<= 1;
					bus->data |= bus->mdio;
				}
				if (bus->cnt == 16 * 2) {
					bus->cnt = 0;
					bus->state = PREAMBLE;
					if (!bus->drive)
						mdio_write_req(bus);
					bus->drive = 0;
				}
			}
			break;
		default:
			break;
	}
}

/* ETRAX-FS Ethernet MAC block starts here.  */

#define RW_MA0_LO	  0x00
#define RW_MA0_HI	  0x01
#define RW_MA1_LO	  0x02
#define RW_MA1_HI	  0x03
#define RW_GA_LO	  0x04
#define RW_GA_HI	  0x05
#define RW_GEN_CTRL	  0x06
#define RW_REC_CTRL	  0x07
#define RW_TR_CTRL	  0x08
#define RW_CLR_ERR	  0x09
#define RW_MGM_CTRL	  0x0a
#define R_STAT		  0x0b
#define FS_ETH_MAX_REGS	  0x17

struct fs_eth
{
	CPUState *env;
	VLANClientState *vc;
	int ethregs;

	/* Two addrs in the filter.  */
	uint8_t macaddr[2][6];
	uint32_t regs[FS_ETH_MAX_REGS];

	struct etraxfs_dma_client *dma_out;
	struct etraxfs_dma_client *dma_in;

	/* MDIO bus.  */
	struct qemu_mdio mdio_bus;
	unsigned int phyaddr;
	int duplex_mismatch;

	/* PHY.	 */
	struct qemu_phy phy;
};

static void eth_validate_duplex(struct fs_eth *eth)
{
	struct qemu_phy *phy;
	unsigned int phy_duplex;
	unsigned int mac_duplex;
	int new_mm = 0;

	phy = eth->mdio_bus.devs[eth->phyaddr];
	phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
	mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);

	if (mac_duplex != phy_duplex)
		new_mm = 1;

	if (eth->regs[RW_GEN_CTRL] & 1) {
		if (new_mm != eth->duplex_mismatch) {
			if (new_mm)
				printf("HW: WARNING "
				       "ETH duplex mismatch MAC=%d PHY=%d\n",
				       mac_duplex, phy_duplex);
			else
				printf("HW: ETH duplex ok.\n");
		}
		eth->duplex_mismatch = new_mm;
	}
}

static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
{
	struct fs_eth *eth = opaque;
	uint32_t r = 0;

	addr >>= 2;

	switch (addr) {
		case R_STAT:
			r = eth->mdio_bus.mdio & 1;
			break;
	default:
		r = eth->regs[addr];
		D(printf ("%s %x\n", __func__, addr * 4));
		break;
	}
	return r;
}

static void eth_update_ma(struct fs_eth *eth, int ma)
{
	int reg;
	int i = 0;

	ma &= 1;

	reg = RW_MA0_LO;
	if (ma)
		reg = RW_MA1_LO;

	eth->macaddr[ma][i++] = eth->regs[reg];
	eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
	eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
	eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
	eth->macaddr[ma][i++] = eth->regs[reg + 1];
	eth->macaddr[ma][i++] = eth->regs[reg + 1] >> 8;

	D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
		 eth->macaddr[ma][0], eth->macaddr[ma][1],
		 eth->macaddr[ma][2], eth->macaddr[ma][3],
		 eth->macaddr[ma][4], eth->macaddr[ma][5]));
}

static void
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
	struct fs_eth *eth = opaque;

	addr >>= 2;
	switch (addr)
	{
		case RW_MA0_LO:
		case RW_MA0_HI:
			eth->regs[addr] = value;
			eth_update_ma(eth, 0);
			break;
		case RW_MA1_LO:
		case RW_MA1_HI:
			eth->regs[addr] = value;
			eth_update_ma(eth, 1);
			break;

		case RW_MGM_CTRL:
			/* Attach an MDIO/PHY abstraction.  */
			if (value & 2)
				eth->mdio_bus.mdio = value & 1;
			if (eth->mdio_bus.mdc != (value & 4)) {
				mdio_cycle(&eth->mdio_bus);
				eth_validate_duplex(eth);
			}
			eth->mdio_bus.mdc = !!(value & 4);
			break;

		case RW_REC_CTRL:
			eth->regs[addr] = value;
			eth_validate_duplex(eth);
			break;

		default:
			eth->regs[addr] = value;
			D(printf ("%s %x %x\n",
				  __func__, addr, value));
			break;
	}
}

/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
   filter dropping group addresses we have not joined.	The filter has 64
   bits (m). The has function is a simple nible xor of the group addr.	*/
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
{
	unsigned int hsh;
	int m_individual = eth->regs[RW_REC_CTRL] & 4;
	int match;

	/* First bit on the wire of a MAC address signals multicast or
	   physical address.  */
	if (!m_individual && !sa[0] & 1)
		return 0;

	/* Calculate the hash index for the GA registers. */
	hsh = 0;
	hsh ^= (*sa) & 0x3f;
	hsh ^= ((*sa) >> 6) & 0x03;
	++sa;
	hsh ^= ((*sa) << 2) & 0x03c;
	hsh ^= ((*sa) >> 4) & 0xf;
	++sa;
	hsh ^= ((*sa) << 4) & 0x30;
	hsh ^= ((*sa) >> 2) & 0x3f;
	++sa;
	hsh ^= (*sa) & 0x3f;
	hsh ^= ((*sa) >> 6) & 0x03;
	++sa;
	hsh ^= ((*sa) << 2) & 0x03c;
	hsh ^= ((*sa) >> 4) & 0xf;
	++sa;
	hsh ^= ((*sa) << 4) & 0x30;
	hsh ^= ((*sa) >> 2) & 0x3f;

	hsh &= 63;
	if (hsh > 31)
		match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
	else
		match = eth->regs[RW_GA_LO] & (1 << hsh);
	D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
		 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
	return match;
}

static int eth_can_receive(void *opaque)
{
	return 1;
}

static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
	unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
	struct fs_eth *eth = opaque;
	int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
	int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
	int r_bcast = eth->regs[RW_REC_CTRL] & 8;

	if (size < 12)
		return;

	D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
		 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
		 use_ma0, use_ma1, r_bcast));
	       
	/* Does the frame get through the address filters?  */
	if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
	    && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
	    && (!r_bcast || memcmp(buf, sa_bcast, 6))
	    && !eth_match_groupaddr(eth, buf))
		return;

	/* FIXME: Find another way to pass on the fake csum.  */
	etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
}

static int eth_tx_push(void *opaque, unsigned char *buf, int len)
{
	struct fs_eth *eth = opaque;

	D(printf("%s buf=%p len=%d\n", __func__, buf, len));
	qemu_send_packet(eth->vc, buf, len);
	return len;
}

static void eth_set_link(VLANClientState *vc)
{
	struct fs_eth *eth = vc->opaque;
	D(printf("%s %d\n", __func__, vc->link_down));
	eth->phy.link = !vc->link_down;
}

static CPUReadMemoryFunc *eth_read[] = {
	NULL, NULL,
	&eth_readl,
};

static CPUWriteMemoryFunc *eth_write[] = {
	NULL, NULL,
	&eth_writel,
};

static void eth_cleanup(VLANClientState *vc)
{
        struct fs_eth *eth = vc->opaque;

        cpu_unregister_io_memory(eth->ethregs);

        qemu_free(eth->dma_out);
        qemu_free(eth);
}

void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
		       target_phys_addr_t base, int phyaddr)
{
	struct etraxfs_dma_client *dma = NULL;	
	struct fs_eth *eth = NULL;

	qemu_check_nic_model(nd, "fseth");

	dma = qemu_mallocz(sizeof *dma * 2);

	eth = qemu_mallocz(sizeof *eth);

	dma[0].client.push = eth_tx_push;
	dma[0].client.opaque = eth;
	dma[1].client.opaque = eth;
	dma[1].client.pull = NULL;

	eth->env = env;
	eth->dma_out = dma;
	eth->dma_in = dma + 1;

	/* Connect the phy.  */
	eth->phyaddr = phyaddr & 0x1f;
	tdk_init(&eth->phy);
	mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);

	eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
	cpu_register_physical_memory (base, 0x5c, eth->ethregs);

	eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
				       eth_receive, eth_can_receive,
				       eth_cleanup, eth);
	eth->vc->opaque = eth;
	eth->vc->link_status_changed = eth_set_link;

	return dma;
}