1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
/*
* QEMU ESP emulation
*
* Copyright (c) 2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug ESP card */
//#define DEBUG_ESP
#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#define pic_set_irq(irq, level) \
do { printf("ESP: set_irq(%d): %d\n", (irq), (level)); pic_set_irq((irq),(level));} while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define ESPDMA_REGS 4
#define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1)
#define ESP_MAXREG 0x3f
#define TI_BUFSZ 65536
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_LOADED 0x04000000
typedef struct ESPState {
BlockDriverState **bd;
uint8_t rregs[ESP_MAXREG];
uint8_t wregs[ESP_MAXREG];
int irq;
uint32_t espdmaregs[ESPDMA_REGS];
uint32_t ti_size;
uint32_t ti_rptr, ti_wptr;
int ti_dir;
uint8_t ti_buf[TI_BUFSZ];
int dma;
} ESPState;
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07
#define STAT_TC 0x10
#define STAT_IN 0x80
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define INTR_RST 0x80
#define SEQ_0 0x0
#define SEQ_CD 0x4
static void handle_satn(ESPState *s)
{
uint8_t buf[32];
uint32_t dmaptr, dmalen;
unsigned int i;
int64_t nb_sectors;
int target;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
target = s->wregs[4] & 7;
DPRINTF("Select with ATN len %d target %d\n", dmalen, target);
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr);
cpu_physical_memory_read(dmaptr, buf, dmalen);
} else {
buf[0] = 0;
memcpy(&buf[1], s->ti_buf, dmalen);
dmalen++;
}
for (i = 0; i < dmalen; i++) {
DPRINTF("Command %2.2x\n", buf[i]);
}
s->ti_dir = 0;
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
if (target >= 4 || !s->bd[target]) { // No such drive
s->rregs[4] = STAT_IN;
s->rregs[5] = INTR_DC;
s->rregs[6] = SEQ_0;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
return;
}
switch (buf[1]) {
case 0x0:
DPRINTF("Test Unit Ready (len %d)\n", buf[5]);
break;
case 0x12:
DPRINTF("Inquiry (len %d)\n", buf[5]);
memset(s->ti_buf, 0, 36);
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
s->ti_buf[0] = 5;
memcpy(&s->ti_buf[16], "QEMU CDROM ", 16);
} else {
s->ti_buf[0] = 0;
memcpy(&s->ti_buf[16], "QEMU HARDDISK ", 16);
}
memcpy(&s->ti_buf[8], "QEMU ", 8);
s->ti_buf[2] = 1;
s->ti_buf[3] = 2;
s->ti_dir = 1;
s->ti_size = 36;
break;
case 0x1a:
DPRINTF("Mode Sense(6) (page %d, len %d)\n", buf[3], buf[5]);
break;
case 0x25:
DPRINTF("Read Capacity (len %d)\n", buf[5]);
memset(s->ti_buf, 0, 8);
bdrv_get_geometry(s->bd[target], &nb_sectors);
s->ti_buf[0] = (nb_sectors >> 24) & 0xff;
s->ti_buf[1] = (nb_sectors >> 16) & 0xff;
s->ti_buf[2] = (nb_sectors >> 8) & 0xff;
s->ti_buf[3] = nb_sectors & 0xff;
s->ti_buf[4] = 0;
s->ti_buf[5] = 0;
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM)
s->ti_buf[6] = 8; // sector size 2048
else
s->ti_buf[6] = 2; // sector size 512
s->ti_buf[7] = 0;
s->ti_dir = 1;
s->ti_size = 8;
break;
case 0x28:
{
int64_t offset, len;
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4;
len = ((buf[8] << 8) | buf[9]) * 4;
s->ti_size = len * 2048;
} else {
offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
len = (buf[8] << 8) | buf[9];
s->ti_size = len * 512;
}
DPRINTF("Read (10) (offset %lld len %lld)\n", offset, len);
bdrv_read(s->bd[target], offset, s->ti_buf, len);
// XXX error handling
s->ti_dir = 1;
break;
}
case 0x2a:
{
int64_t offset, len;
if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4;
len = ((buf[8] << 8) | buf[9]) * 4;
s->ti_size = len * 2048;
} else {
offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
len = (buf[8] << 8) | buf[9];
s->ti_size = len * 512;
}
DPRINTF("Write (10) (offset %lld len %lld)\n", offset, len);
bdrv_write(s->bd[target], offset, s->ti_buf, len);
// XXX error handling
s->ti_dir = 0;
break;
}
default:
DPRINTF("Unknown SCSI command (%2.2x)\n", buf[1]);
break;
}
s->rregs[4] = STAT_IN | STAT_TC | STAT_DI;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
static void dma_write(ESPState *s, const uint8_t *buf, uint32_t len)
{
uint32_t dmaptr, dmalen;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
DPRINTF("Transfer status len %d\n", dmalen);
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
cpu_physical_memory_write(dmaptr, buf, len);
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
} else {
memcpy(s->ti_buf, buf, len);
s->ti_size = dmalen;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[7] = dmalen;
}
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
static const uint8_t okbuf[] = {0, 0};
static void handle_ti(ESPState *s)
{
uint32_t dmaptr, dmalen;
unsigned int i;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
DPRINTF("Transfer Information len %d\n", dmalen);
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr);
for (i = 0; i < s->ti_size; i++) {
dmaptr = iommu_translate(s->espdmaregs[1] + i);
if (s->ti_dir)
cpu_physical_memory_write(dmaptr, &s->ti_buf[i], 1);
else
cpu_physical_memory_read(dmaptr, &s->ti_buf[i], 1);
}
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS;
s->rregs[6] = 0;
s->espdmaregs[0] |= DMA_INTR;
} else {
s->ti_size = dmalen;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[7] = dmalen;
}
pic_set_irq(s->irq, 1);
}
static void esp_reset(void *opaque)
{
ESPState *s = opaque;
memset(s->rregs, 0, ESP_MAXREG);
s->rregs[0x0e] = 0x4; // Indicate fas100a
memset(s->espdmaregs, 0, ESPDMA_REGS * 4);
}
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESP_MAXREG) >> 2;
DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
switch (saddr) {
case 2:
// FIFO
if (s->ti_size > 0) {
s->ti_size--;
s->rregs[saddr] = s->ti_buf[s->ti_rptr++];
pic_set_irq(s->irq, 1);
}
if (s->ti_size == 0) {
s->ti_rptr = 0;
s->ti_wptr = 0;
}
break;
case 5:
// interrupt
// Clear status bits except TC
s->rregs[4] &= STAT_TC;
pic_set_irq(s->irq, 0);
s->espdmaregs[0] &= ~DMA_INTR;
break;
default:
break;
}
return s->rregs[saddr];
}
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESP_MAXREG) >> 2;
DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
switch (saddr) {
case 0:
case 1:
s->rregs[saddr] = val;
break;
case 2:
// FIFO
s->ti_size++;
s->ti_buf[s->ti_wptr++] = val & 0xff;
break;
case 3:
s->rregs[saddr] = val;
// Command
if (val & 0x80) {
s->dma = 1;
} else {
s->dma = 0;
}
switch(val & 0x7f) {
case 0:
DPRINTF("NOP (%2.2x)\n", val);
break;
case 1:
DPRINTF("Flush FIFO (%2.2x)\n", val);
//s->ti_size = 0;
s->rregs[5] = INTR_FC;
s->rregs[6] = 0;
break;
case 2:
DPRINTF("Chip reset (%2.2x)\n", val);
esp_reset(s);
break;
case 3:
DPRINTF("Bus reset (%2.2x)\n", val);
s->rregs[5] = INTR_RST;
if (!(s->wregs[8] & 0x40)) {
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
break;
case 0x10:
handle_ti(s);
break;
case 0x11:
DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
dma_write(s, okbuf, 2);
break;
case 0x12:
DPRINTF("Message Accepted (%2.2x)\n", val);
dma_write(s, okbuf, 2);
s->rregs[5] = INTR_DC;
s->rregs[6] = 0;
break;
case 0x1a:
DPRINTF("Set ATN (%2.2x)\n", val);
break;
case 0x42:
handle_satn(s);
break;
case 0x43:
DPRINTF("Set ATN & stop (%2.2x)\n", val);
handle_satn(s);
break;
default:
DPRINTF("Unhandled ESP command (%2.2x)\n", val);
break;
}
break;
case 4 ... 7:
break;
case 8:
s->rregs[saddr] = val;
break;
case 9 ... 10:
break;
case 11:
s->rregs[saddr] = val & 0x15;
break;
case 12 ... 15:
s->rregs[saddr] = val;
break;
default:
break;
}
s->wregs[saddr] = val;
}
static CPUReadMemoryFunc *esp_mem_read[3] = {
esp_mem_readb,
esp_mem_readb,
esp_mem_readb,
};
static CPUWriteMemoryFunc *esp_mem_write[3] = {
esp_mem_writeb,
esp_mem_writeb,
esp_mem_writeb,
};
static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->espdmaregs[saddr]);
return s->espdmaregs[saddr];
}
static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->espdmaregs[saddr], val);
switch (saddr) {
case 0:
if (!(val & DMA_INTREN))
pic_set_irq(s->irq, 0);
if (val & 0x80) {
esp_reset(s);
} else if (val & 0x40) {
val &= ~0x40;
} else if (val == 0)
val = 0x40;
val &= 0x0fffffff;
val |= DMA_VER;
break;
case 1:
s->espdmaregs[0] = DMA_LOADED;
break;
default:
break;
}
s->espdmaregs[saddr] = val;
}
static CPUReadMemoryFunc *espdma_mem_read[3] = {
espdma_mem_readl,
espdma_mem_readl,
espdma_mem_readl,
};
static CPUWriteMemoryFunc *espdma_mem_write[3] = {
espdma_mem_writel,
espdma_mem_writel,
espdma_mem_writel,
};
static void esp_save(QEMUFile *f, void *opaque)
{
ESPState *s = opaque;
unsigned int i;
qemu_put_buffer(f, s->rregs, ESP_MAXREG);
qemu_put_buffer(f, s->wregs, ESP_MAXREG);
qemu_put_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_put_be32s(f, &s->espdmaregs[i]);
qemu_put_be32s(f, &s->ti_size);
qemu_put_be32s(f, &s->ti_rptr);
qemu_put_be32s(f, &s->ti_wptr);
qemu_put_be32s(f, &s->ti_dir);
qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_put_be32s(f, &s->dma);
}
static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
ESPState *s = opaque;
unsigned int i;
if (version_id != 1)
return -EINVAL;
qemu_get_buffer(f, s->rregs, ESP_MAXREG);
qemu_get_buffer(f, s->wregs, ESP_MAXREG);
qemu_get_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_get_be32s(f, &s->espdmaregs[i]);
qemu_get_be32s(f, &s->ti_size);
qemu_get_be32s(f, &s->ti_rptr);
qemu_get_be32s(f, &s->ti_wptr);
qemu_get_be32s(f, &s->ti_dir);
qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_get_be32s(f, &s->dma);
return 0;
}
void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr)
{
ESPState *s;
int esp_io_memory, espdma_io_memory;
s = qemu_mallocz(sizeof(ESPState));
if (!s)
return;
s->bd = bd;
s->irq = irq;
esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory);
espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s);
cpu_register_physical_memory(espdaddr, 16, espdma_io_memory);
esp_reset(s);
register_savevm("esp", espaddr, 1, esp_save, esp_load, s);
qemu_register_reset(esp_reset, s);
}
|