1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
|
/*
* CFI parallel flash with Intel command set emulation
*
* Copyright (c) 2006 Thorsten Zitterell
* Copyright (c) 2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For now, this code can emulate flashes of 1, 2 or 4 bytes width.
* Supported commands/modes are:
* - flash read
* - flash write
* - flash ID read
* - sector erase
* - CFI queries
*
* It does not support timings
* It does not support flash interleaving
* It does not implement software data protection as found in many real chips
* It does not implement erase suspend/resume commands
* It does not implement multiple sectors erase
*
* It does not implement much more ...
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/block/flash.h"
#include "sysemu/block-backend.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
#include "exec/address-spaces.h"
#include "qemu/host-utils.h"
#include "qemu/log.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#define PFLASH_BUG(fmt, ...) \
do { \
fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
exit(1); \
} while(0)
/* #define PFLASH_DEBUG */
#ifdef PFLASH_DEBUG
#define DPRINTF(fmt, ...) \
do { \
fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
#define PFLASH_BE 0
#define PFLASH_SECURE 1
struct pflash_t {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
BlockBackend *blk;
uint32_t nb_blocs;
uint64_t sector_len;
uint8_t bank_width;
uint8_t device_width; /* If 0, device width not specified. */
uint8_t max_device_width; /* max device width in bytes */
uint32_t features;
uint8_t wcycle; /* if 0, the flash is read normally */
int ro;
uint8_t cmd;
uint8_t status;
uint16_t ident0;
uint16_t ident1;
uint16_t ident2;
uint16_t ident3;
uint8_t cfi_len;
uint8_t cfi_table[0x52];
uint64_t counter;
unsigned int writeblock_size;
QEMUTimer *timer;
MemoryRegion mem;
char *name;
void *storage;
VMChangeStateEntry *vmstate;
};
static int pflash_post_load(void *opaque, int version_id);
static const VMStateDescription vmstate_pflash = {
.name = "pflash_cfi01",
.version_id = 1,
.minimum_version_id = 1,
.post_load = pflash_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(wcycle, pflash_t),
VMSTATE_UINT8(cmd, pflash_t),
VMSTATE_UINT8(status, pflash_t),
VMSTATE_UINT64(counter, pflash_t),
VMSTATE_END_OF_LIST()
}
};
static void pflash_timer (void *opaque)
{
pflash_t *pfl = opaque;
DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
/* Reset flash */
pfl->status ^= 0x80;
memory_region_rom_device_set_romd(&pfl->mem, true);
pfl->wcycle = 0;
pfl->cmd = 0;
}
/* Perform a CFI query based on the bank width of the flash.
* If this code is called we know we have a device_width set for
* this flash.
*/
static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
{
int i;
uint32_t resp = 0;
hwaddr boff;
/* Adjust incoming offset to match expected device-width
* addressing. CFI query addresses are always specified in terms of
* the maximum supported width of the device. This means that x8
* devices and x8/x16 devices in x8 mode behave differently. For
* devices that are not used at their max width, we will be
* provided with addresses that use higher address bits than
* expected (based on the max width), so we will shift them lower
* so that they will match the addresses used when
* device_width==max_device_width.
*/
boff = offset >> (ctz32(pfl->bank_width) +
ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
if (boff > pfl->cfi_len) {
return 0;
}
/* Now we will construct the CFI response generated by a single
* device, then replicate that for all devices that make up the
* bus. For wide parts used in x8 mode, CFI query responses
* are different than native byte-wide parts.
*/
resp = pfl->cfi_table[boff];
if (pfl->device_width != pfl->max_device_width) {
/* The only case currently supported is x8 mode for a
* wider part.
*/
if (pfl->device_width != 1 || pfl->bank_width > 4) {
DPRINTF("%s: Unsupported device configuration: "
"device_width=%d, max_device_width=%d\n",
__func__, pfl->device_width,
pfl->max_device_width);
return 0;
}
/* CFI query data is repeated, rather than zero padded for
* wide devices used in x8 mode.
*/
for (i = 1; i < pfl->max_device_width; i++) {
resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
}
}
/* Replicate responses for each device in bank. */
if (pfl->device_width < pfl->bank_width) {
for (i = pfl->device_width;
i < pfl->bank_width; i += pfl->device_width) {
resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
}
}
return resp;
}
/* Perform a device id query based on the bank width of the flash. */
static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
{
int i;
uint32_t resp;
hwaddr boff;
/* Adjust incoming offset to match expected device-width
* addressing. Device ID read addresses are always specified in
* terms of the maximum supported width of the device. This means
* that x8 devices and x8/x16 devices in x8 mode behave
* differently. For devices that are not used at their max width,
* we will be provided with addresses that use higher address bits
* than expected (based on the max width), so we will shift them
* lower so that they will match the addresses used when
* device_width==max_device_width.
*/
boff = offset >> (ctz32(pfl->bank_width) +
ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
/* Mask off upper bits which may be used in to query block
* or sector lock status at other addresses.
* Offsets 2/3 are block lock status, is not emulated.
*/
switch (boff & 0xFF) {
case 0:
resp = pfl->ident0;
DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
break;
case 1:
resp = pfl->ident1;
DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
break;
default:
DPRINTF("%s: Read Device Information offset=%x\n", __func__,
(unsigned)offset);
return 0;
break;
}
/* Replicate responses for each device in bank. */
if (pfl->device_width < pfl->bank_width) {
for (i = pfl->device_width;
i < pfl->bank_width; i += pfl->device_width) {
resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
}
}
return resp;
}
static uint32_t pflash_data_read(pflash_t *pfl, hwaddr offset,
int width, int be)
{
uint8_t *p;
uint32_t ret;
p = pfl->storage;
switch (width) {
case 1:
ret = p[offset];
DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
__func__, offset, ret);
break;
case 2:
if (be) {
ret = p[offset] << 8;
ret |= p[offset + 1];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
}
DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
__func__, offset, ret);
break;
case 4:
if (be) {
ret = p[offset] << 24;
ret |= p[offset + 1] << 16;
ret |= p[offset + 2] << 8;
ret |= p[offset + 3];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
ret |= p[offset + 2] << 16;
ret |= p[offset + 3] << 24;
}
DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
__func__, offset, ret);
break;
default:
DPRINTF("BUG in %s\n", __func__);
abort();
}
return ret;
}
static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
int width, int be)
{
hwaddr boff;
uint32_t ret;
ret = -1;
#if 0
DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
__func__, offset, pfl->cmd, width);
#endif
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read */
DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
pfl->wcycle = 0;
pfl->cmd = 0;
/* fall through to read code */
case 0x00:
/* Flash area read */
ret = pflash_data_read(pfl, offset, width, be);
break;
case 0x10: /* Single byte program */
case 0x20: /* Block erase */
case 0x28: /* Block erase */
case 0x40: /* single byte program */
case 0x50: /* Clear status register */
case 0x60: /* Block /un)lock */
case 0x70: /* Status Register */
case 0xe8: /* Write block */
/* Status register read. Return status from each device in
* bank.
*/
ret = pfl->status;
if (pfl->device_width && width > pfl->device_width) {
int shift = pfl->device_width * 8;
while (shift + pfl->device_width * 8 <= width * 8) {
ret |= pfl->status << shift;
shift += pfl->device_width * 8;
}
} else if (!pfl->device_width && width > 2) {
/* Handle 32 bit flash cases where device width is not
* set. (Existing behavior before device width added.)
*/
ret |= pfl->status << 16;
}
DPRINTF("%s: status %x\n", __func__, ret);
break;
case 0x90:
if (!pfl->device_width) {
/* Preserve old behavior if device width not specified */
boff = offset & 0xFF;
if (pfl->bank_width == 2) {
boff = boff >> 1;
} else if (pfl->bank_width == 4) {
boff = boff >> 2;
}
switch (boff) {
case 0:
ret = pfl->ident0 << 8 | pfl->ident1;
DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
break;
case 1:
ret = pfl->ident2 << 8 | pfl->ident3;
DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
break;
default:
DPRINTF("%s: Read Device Information boff=%x\n", __func__,
(unsigned)boff);
ret = 0;
break;
}
} else {
/* If we have a read larger than the bank_width, combine multiple
* manufacturer/device ID queries into a single response.
*/
int i;
for (i = 0; i < width; i += pfl->bank_width) {
ret = deposit32(ret, i * 8, pfl->bank_width * 8,
pflash_devid_query(pfl,
offset + i * pfl->bank_width));
}
}
break;
case 0x98: /* Query mode */
if (!pfl->device_width) {
/* Preserve old behavior if device width not specified */
boff = offset & 0xFF;
if (pfl->bank_width == 2) {
boff = boff >> 1;
} else if (pfl->bank_width == 4) {
boff = boff >> 2;
}
if (boff > pfl->cfi_len) {
ret = 0;
} else {
ret = pfl->cfi_table[boff];
}
} else {
/* If we have a read larger than the bank_width, combine multiple
* CFI queries into a single response.
*/
int i;
for (i = 0; i < width; i += pfl->bank_width) {
ret = deposit32(ret, i * 8, pfl->bank_width * 8,
pflash_cfi_query(pfl,
offset + i * pfl->bank_width));
}
}
break;
}
return ret;
}
/* update flash content on disk */
static void pflash_update(pflash_t *pfl, int offset,
int size)
{
int offset_end;
if (pfl->blk) {
offset_end = offset + size;
/* widen to sector boundaries */
offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
blk_pwrite(pfl->blk, offset, pfl->storage + offset,
offset_end - offset, 0);
}
}
static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
uint32_t value, int width, int be)
{
uint8_t *p = pfl->storage;
DPRINTF("%s: block write offset " TARGET_FMT_plx
" value %x counter %016" PRIx64 "\n",
__func__, offset, value, pfl->counter);
switch (width) {
case 1:
p[offset] = value;
break;
case 2:
if (be) {
p[offset] = value >> 8;
p[offset + 1] = value;
} else {
p[offset] = value;
p[offset + 1] = value >> 8;
}
break;
case 4:
if (be) {
p[offset] = value >> 24;
p[offset + 1] = value >> 16;
p[offset + 2] = value >> 8;
p[offset + 3] = value;
} else {
p[offset] = value;
p[offset + 1] = value >> 8;
p[offset + 2] = value >> 16;
p[offset + 3] = value >> 24;
}
break;
}
}
static void pflash_write(pflash_t *pfl, hwaddr offset,
uint32_t value, int width, int be)
{
uint8_t *p;
uint8_t cmd;
cmd = value;
DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
__func__, offset, value, width, pfl->wcycle);
if (!pfl->wcycle) {
/* Set the device in I/O access mode */
memory_region_rom_device_set_romd(&pfl->mem, false);
}
switch (pfl->wcycle) {
case 0:
/* read mode */
switch (cmd) {
case 0x00: /* ??? */
goto reset_flash;
case 0x10: /* Single Byte Program */
case 0x40: /* Single Byte Program */
DPRINTF("%s: Single Byte Program\n", __func__);
break;
case 0x20: /* Block erase */
p = pfl->storage;
offset &= ~(pfl->sector_len - 1);
DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
__func__, offset, (unsigned)pfl->sector_len);
if (!pfl->ro) {
memset(p + offset, 0xff, pfl->sector_len);
pflash_update(pfl, offset, pfl->sector_len);
} else {
pfl->status |= 0x20; /* Block erase error */
}
pfl->status |= 0x80; /* Ready! */
break;
case 0x50: /* Clear status bits */
DPRINTF("%s: Clear status bits\n", __func__);
pfl->status = 0x0;
goto reset_flash;
case 0x60: /* Block (un)lock */
DPRINTF("%s: Block unlock\n", __func__);
break;
case 0x70: /* Status Register */
DPRINTF("%s: Read status register\n", __func__);
pfl->cmd = cmd;
return;
case 0x90: /* Read Device ID */
DPRINTF("%s: Read Device information\n", __func__);
pfl->cmd = cmd;
return;
case 0x98: /* CFI query */
DPRINTF("%s: CFI query\n", __func__);
break;
case 0xe8: /* Write to buffer */
DPRINTF("%s: Write to buffer\n", __func__);
pfl->status |= 0x80; /* Ready! */
break;
case 0xf0: /* Probe for AMD flash */
DPRINTF("%s: Probe for AMD flash\n", __func__);
goto reset_flash;
case 0xff: /* Read array mode */
DPRINTF("%s: Read array mode\n", __func__);
goto reset_flash;
default:
goto error_flash;
}
pfl->wcycle++;
pfl->cmd = cmd;
break;
case 1:
switch (pfl->cmd) {
case 0x10: /* Single Byte Program */
case 0x40: /* Single Byte Program */
DPRINTF("%s: Single Byte Program\n", __func__);
if (!pfl->ro) {
pflash_data_write(pfl, offset, value, width, be);
pflash_update(pfl, offset, width);
} else {
pfl->status |= 0x10; /* Programming error */
}
pfl->status |= 0x80; /* Ready! */
pfl->wcycle = 0;
break;
case 0x20: /* Block erase */
case 0x28:
if (cmd == 0xd0) { /* confirm */
pfl->wcycle = 0;
pfl->status |= 0x80;
} else if (cmd == 0xff) { /* read array mode */
goto reset_flash;
} else
goto error_flash;
break;
case 0xe8:
/* Mask writeblock size based on device width, or bank width if
* device width not specified.
*/
if (pfl->device_width) {
value = extract32(value, 0, pfl->device_width * 8);
} else {
value = extract32(value, 0, pfl->bank_width * 8);
}
DPRINTF("%s: block write of %x bytes\n", __func__, value);
pfl->counter = value;
pfl->wcycle++;
break;
case 0x60:
if (cmd == 0xd0) {
pfl->wcycle = 0;
pfl->status |= 0x80;
} else if (cmd == 0x01) {
pfl->wcycle = 0;
pfl->status |= 0x80;
} else if (cmd == 0xff) {
goto reset_flash;
} else {
DPRINTF("%s: Unknown (un)locking command\n", __func__);
goto reset_flash;
}
break;
case 0x98:
if (cmd == 0xff) {
goto reset_flash;
} else {
DPRINTF("%s: leaving query mode\n", __func__);
}
break;
default:
goto error_flash;
}
break;
case 2:
switch (pfl->cmd) {
case 0xe8: /* Block write */
if (!pfl->ro) {
pflash_data_write(pfl, offset, value, width, be);
} else {
pfl->status |= 0x10; /* Programming error */
}
pfl->status |= 0x80;
if (!pfl->counter) {
hwaddr mask = pfl->writeblock_size - 1;
mask = ~mask;
DPRINTF("%s: block write finished\n", __func__);
pfl->wcycle++;
if (!pfl->ro) {
/* Flush the entire write buffer onto backing storage. */
pflash_update(pfl, offset & mask, pfl->writeblock_size);
} else {
pfl->status |= 0x10; /* Programming error */
}
}
pfl->counter--;
break;
default:
goto error_flash;
}
break;
case 3: /* Confirm mode */
switch (pfl->cmd) {
case 0xe8: /* Block write */
if (cmd == 0xd0) {
pfl->wcycle = 0;
pfl->status |= 0x80;
} else {
DPRINTF("%s: unknown command for \"write block\"\n", __func__);
PFLASH_BUG("Write block confirm");
goto reset_flash;
}
break;
default:
goto error_flash;
}
break;
default:
/* Should never happen */
DPRINTF("%s: invalid write state\n", __func__);
goto reset_flash;
}
return;
error_flash:
qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
"(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
"\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
reset_flash:
memory_region_rom_device_set_romd(&pfl->mem, true);
pfl->wcycle = 0;
pfl->cmd = 0;
}
static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
unsigned len, MemTxAttrs attrs)
{
pflash_t *pfl = opaque;
bool be = !!(pfl->features & (1 << PFLASH_BE));
if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
*value = pflash_data_read(opaque, addr, len, be);
} else {
*value = pflash_read(opaque, addr, len, be);
}
return MEMTX_OK;
}
static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
unsigned len, MemTxAttrs attrs)
{
pflash_t *pfl = opaque;
bool be = !!(pfl->features & (1 << PFLASH_BE));
if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
return MEMTX_ERROR;
} else {
pflash_write(opaque, addr, value, len, be);
return MEMTX_OK;
}
}
static const MemoryRegionOps pflash_cfi01_ops = {
.read_with_attrs = pflash_mem_read_with_attrs,
.write_with_attrs = pflash_mem_write_with_attrs,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
{
pflash_t *pfl = CFI_PFLASH01(dev);
uint64_t total_len;
int ret;
uint64_t blocks_per_device, device_len;
int num_devices;
Error *local_err = NULL;
if (pfl->sector_len == 0) {
error_setg(errp, "attribute \"sector-length\" not specified or zero.");
return;
}
if (pfl->nb_blocs == 0) {
error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
return;
}
if (pfl->name == NULL) {
error_setg(errp, "attribute \"name\" not specified.");
return;
}
total_len = pfl->sector_len * pfl->nb_blocs;
/* These are only used to expose the parameters of each device
* in the cfi_table[].
*/
num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
blocks_per_device = pfl->nb_blocs / num_devices;
device_len = pfl->sector_len * blocks_per_device;
/* XXX: to be fixed */
#if 0
if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
return NULL;
#endif
memory_region_init_rom_device(
&pfl->mem, OBJECT(dev),
&pflash_cfi01_ops,
pfl,
pfl->name, total_len, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register_ram(&pfl->mem, DEVICE(pfl));
pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
if (pfl->blk) {
/* read the initial flash content */
ret = blk_pread(pfl->blk, 0, pfl->storage, total_len);
if (ret < 0) {
vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
error_setg(errp, "failed to read the initial flash content");
return;
}
}
if (pfl->blk) {
pfl->ro = blk_is_read_only(pfl->blk);
} else {
pfl->ro = 0;
}
/* Default to devices being used at their maximum device width. This was
* assumed before the device_width support was added.
*/
if (!pfl->max_device_width) {
pfl->max_device_width = pfl->device_width;
}
pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
pfl->wcycle = 0;
pfl->cmd = 0;
pfl->status = 0;
/* Hardcoded CFI table */
pfl->cfi_len = 0x52;
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
pfl->cfi_table[0x12] = 'Y';
/* Command set (Intel) */
pfl->cfi_table[0x13] = 0x01;
pfl->cfi_table[0x14] = 0x00;
/* Primary extended table address (none) */
pfl->cfi_table[0x15] = 0x31;
pfl->cfi_table[0x16] = 0x00;
/* Alternate command set (none) */
pfl->cfi_table[0x17] = 0x00;
pfl->cfi_table[0x18] = 0x00;
/* Alternate extended table (none) */
pfl->cfi_table[0x19] = 0x00;
pfl->cfi_table[0x1A] = 0x00;
/* Vcc min */
pfl->cfi_table[0x1B] = 0x45;
/* Vcc max */
pfl->cfi_table[0x1C] = 0x55;
/* Vpp min (no Vpp pin) */
pfl->cfi_table[0x1D] = 0x00;
/* Vpp max (no Vpp pin) */
pfl->cfi_table[0x1E] = 0x00;
/* Reserved */
pfl->cfi_table[0x1F] = 0x07;
/* Timeout for min size buffer write */
pfl->cfi_table[0x20] = 0x07;
/* Typical timeout for block erase */
pfl->cfi_table[0x21] = 0x0a;
/* Typical timeout for full chip erase (4096 ms) */
pfl->cfi_table[0x22] = 0x00;
/* Reserved */
pfl->cfi_table[0x23] = 0x04;
/* Max timeout for buffer write */
pfl->cfi_table[0x24] = 0x04;
/* Max timeout for block erase */
pfl->cfi_table[0x25] = 0x04;
/* Max timeout for chip erase */
pfl->cfi_table[0x26] = 0x00;
/* Device size */
pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
/* Flash device interface (8 & 16 bits) */
pfl->cfi_table[0x28] = 0x02;
pfl->cfi_table[0x29] = 0x00;
/* Max number of bytes in multi-bytes write */
if (pfl->bank_width == 1) {
pfl->cfi_table[0x2A] = 0x08;
} else {
pfl->cfi_table[0x2A] = 0x0B;
}
pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions (uniform) */
pfl->cfi_table[0x2C] = 0x01;
/* Erase block region 1 */
pfl->cfi_table[0x2D] = blocks_per_device - 1;
pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
pfl->cfi_table[0x30] = pfl->sector_len >> 16;
/* Extended */
pfl->cfi_table[0x31] = 'P';
pfl->cfi_table[0x32] = 'R';
pfl->cfi_table[0x33] = 'I';
pfl->cfi_table[0x34] = '1';
pfl->cfi_table[0x35] = '0';
pfl->cfi_table[0x36] = 0x00;
pfl->cfi_table[0x37] = 0x00;
pfl->cfi_table[0x38] = 0x00;
pfl->cfi_table[0x39] = 0x00;
pfl->cfi_table[0x3a] = 0x00;
pfl->cfi_table[0x3b] = 0x00;
pfl->cfi_table[0x3c] = 0x00;
pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
}
static Property pflash_cfi01_properties[] = {
DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
/* num-blocks is the number of blocks actually visible to the guest,
* ie the total size of the device divided by the sector length.
* If we're emulating flash devices wired in parallel the actual
* number of blocks per indvidual device will differ.
*/
DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
/* width here is the overall width of this QEMU device in bytes.
* The QEMU device may be emulating a number of flash devices
* wired up in parallel; the width of each individual flash
* device should be specified via device-width. If the individual
* devices have a maximum width which is greater than the width
* they are being used for, this maximum width should be set via
* max-device-width (which otherwise defaults to device-width).
* So for instance a 32-bit wide QEMU flash device made from four
* 16-bit flash devices used in 8-bit wide mode would be configured
* with width = 4, device-width = 1, max-device-width = 2.
*
* If device-width is not specified we default to backwards
* compatible behaviour which is a bad emulation of two
* 16 bit devices making up a 32 bit wide QEMU device. This
* is deprecated for new uses of this device.
*/
DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
DEFINE_PROP_BIT("big-endian", struct pflash_t, features, PFLASH_BE, 0),
DEFINE_PROP_BIT("secure", struct pflash_t, features, PFLASH_SECURE, 0),
DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
DEFINE_PROP_STRING("name", struct pflash_t, name),
DEFINE_PROP_END_OF_LIST(),
};
static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pflash_cfi01_realize;
dc->props = pflash_cfi01_properties;
dc->vmsd = &vmstate_pflash;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo pflash_cfi01_info = {
.name = TYPE_CFI_PFLASH01,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(struct pflash_t),
.class_init = pflash_cfi01_class_init,
};
static void pflash_cfi01_register_types(void)
{
type_register_static(&pflash_cfi01_info);
}
type_init(pflash_cfi01_register_types)
pflash_t *pflash_cfi01_register(hwaddr base,
DeviceState *qdev, const char *name,
hwaddr size,
BlockBackend *blk,
uint32_t sector_len, int nb_blocs,
int bank_width, uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3, int be)
{
DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
if (blk) {
qdev_prop_set_drive(dev, "drive", blk, &error_abort);
}
qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
qdev_prop_set_uint64(dev, "sector-length", sector_len);
qdev_prop_set_uint8(dev, "width", bank_width);
qdev_prop_set_bit(dev, "big-endian", !!be);
qdev_prop_set_uint16(dev, "id0", id0);
qdev_prop_set_uint16(dev, "id1", id1);
qdev_prop_set_uint16(dev, "id2", id2);
qdev_prop_set_uint16(dev, "id3", id3);
qdev_prop_set_string(dev, "name", name);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
return CFI_PFLASH01(dev);
}
MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
{
return &fl->mem;
}
static void postload_update_cb(void *opaque, int running, RunState state)
{
pflash_t *pfl = opaque;
/* This is called after bdrv_invalidate_cache_all. */
qemu_del_vm_change_state_handler(pfl->vmstate);
pfl->vmstate = NULL;
DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
}
static int pflash_post_load(void *opaque, int version_id)
{
pflash_t *pfl = opaque;
if (!pfl->ro) {
pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
pfl);
}
return 0;
}
|