1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
|
/*
**
** File: fmopl.c -- software implementation of FM sound generator
**
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
**
** Version 0.37a
**
*/
/*
preliminary :
Problem :
note:
*/
/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include <math.h>
//#include "driver.h" /* use M.A.M.E. */
#include "fmopl.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
/* -------------------- for debug --------------------- */
/* #define OPL_OUTPUT_LOG */
#ifdef OPL_OUTPUT_LOG
static FILE *opl_dbg_fp = NULL;
static FM_OPL *opl_dbg_opl[16];
static int opl_dbg_maxchip,opl_dbg_chip;
#endif
/* -------------------- preliminary define section --------------------- */
/* attack/decay rate time rate */
#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
#define FREQ_BITS 24 /* frequency turn */
/* counter bits = 20 , octerve 7 */
#define FREQ_RATE (1<<(FREQ_BITS-20))
#define TL_BITS (FREQ_BITS+2)
/* final output shift , limit minimum and maximum */
#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
/* -------------------- quality selection --------------------- */
/* sinwave entries */
/* used static memory = SIN_ENT * 4 (byte) */
#define SIN_ENT 2048
/* output level entries (envelope,sinwave) */
/* envelope counter lower bits */
#define ENV_BITS 16
/* envelope output entries */
#define EG_ENT 4096
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
/* used static memory = EG_ENT*4 (byte) */
#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
#define EG_DED EG_OFF
#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
#define EG_AED EG_DST
#define EG_AST 0 /* ATTACK START */
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
/* LFO table entries */
#define VIB_ENT 512
#define VIB_SHIFT (32-9)
#define AMS_ENT 512
#define AMS_SHIFT (32-9)
#define VIB_RATE 256
/* -------------------- local defines , macros --------------------- */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
/* envelope phase */
#define ENV_MOD_RR 0x00
#define ENV_MOD_DR 0x01
#define ENV_MOD_AR 0x02
/* -------------------- tables --------------------- */
static const int slot_array[32]=
{
0, 2, 4, 1, 3, 5,-1,-1,
6, 8,10, 7, 9,11,-1,-1,
12,14,16,13,15,17,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1
};
/* key scale level */
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
#define DV (EG_STEP/2)
static const uint32_t KSL_TABLE[8*16]=
{
/* OCT 0 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
/* OCT 1 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
/* OCT 2 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
/* OCT 3 */
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
/* OCT 4 */
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
/* OCT 5 */
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
/* OCT 6 */
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
/* OCT 7 */
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
19.875/DV,20.250/DV,20.625/DV,21.000/DV
};
#undef DV
/* sustain lebel table (3db per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
static const int32_t SL_TABLE[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
/* TL_TABLE[ 0 to TL_MAX ] : plus section */
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
static int32_t *TL_TABLE;
/* pointers to TL_TABLE with sinwave output offset */
static int32_t **SIN_TABLE;
/* LFO table */
static int32_t *AMS_TABLE;
static int32_t *VIB_TABLE;
/* envelope output curve table */
/* attack + decay + OFF */
static int32_t ENV_CURVE[2*EG_ENT+1];
/* multiple table */
#define ML 2
static const uint32_t MUL_TABLE[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
};
#undef ML
/* dummy attack / decay rate ( when rate == 0 ) */
static int32_t RATE_0[16]=
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/* -------------------- static state --------------------- */
/* lock level of common table */
static int num_lock = 0;
/* work table */
static void *cur_chip = NULL; /* current chip point */
/* currenct chip state */
/* static OPLSAMPLE *bufL,*bufR; */
static OPL_CH *S_CH;
static OPL_CH *E_CH;
static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
static int32_t outd[1];
static int32_t ams;
static int32_t vib;
static int32_t *ams_table;
static int32_t *vib_table;
static int32_t amsIncr;
static int32_t vibIncr;
static int32_t feedback2; /* connect for SLOT 2 */
/* log output level */
#define LOG_ERR 3 /* ERROR */
#define LOG_WAR 2 /* WARNING */
#define LOG_INF 1 /* INFORMATION */
//#define LOG_LEVEL LOG_INF
#define LOG_LEVEL LOG_ERR
//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
#define LOG(n,x)
/* --------------------- subroutines --------------------- */
static inline int Limit( int val, int max, int min ) {
if ( val > max )
val = max;
else if ( val < min )
val = min;
return val;
}
/* status set and IRQ handling */
static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
{
/* set status flag */
OPL->status |= flag;
if(!(OPL->status & 0x80))
{
if(OPL->status & OPL->statusmask)
{ /* IRQ on */
OPL->status |= 0x80;
}
}
}
/* status reset and IRQ handling */
static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
{
/* reset status flag */
OPL->status &=~flag;
if((OPL->status & 0x80))
{
if (!(OPL->status & OPL->statusmask) )
{
OPL->status &= 0x7f;
}
}
}
/* IRQ mask set */
static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
{
OPL->statusmask = flag;
/* IRQ handling check */
OPL_STATUS_SET(OPL,0);
OPL_STATUS_RESET(OPL,0);
}
/* ----- key on ----- */
static inline void OPL_KEYON(OPL_SLOT *SLOT)
{
/* sin wave restart */
SLOT->Cnt = 0;
/* set attack */
SLOT->evm = ENV_MOD_AR;
SLOT->evs = SLOT->evsa;
SLOT->evc = EG_AST;
SLOT->eve = EG_AED;
}
/* ----- key off ----- */
static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
{
if( SLOT->evm > ENV_MOD_RR)
{
/* set envelope counter from envleope output */
SLOT->evm = ENV_MOD_RR;
if( !(SLOT->evc&EG_DST) )
//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
SLOT->evc = EG_DST;
SLOT->eve = EG_DED;
SLOT->evs = SLOT->evsr;
}
}
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
/* return : envelope output */
static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
{
/* calcrate envelope generator */
if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
{
switch( SLOT->evm ){
case ENV_MOD_AR: /* ATTACK -> DECAY1 */
/* next DR */
SLOT->evm = ENV_MOD_DR;
SLOT->evc = EG_DST;
SLOT->eve = SLOT->SL;
SLOT->evs = SLOT->evsd;
break;
case ENV_MOD_DR: /* DECAY -> SL or RR */
SLOT->evc = SLOT->SL;
SLOT->eve = EG_DED;
if(SLOT->eg_typ)
{
SLOT->evs = 0;
}
else
{
SLOT->evm = ENV_MOD_RR;
SLOT->evs = SLOT->evsr;
}
break;
case ENV_MOD_RR: /* RR -> OFF */
SLOT->evc = EG_OFF;
SLOT->eve = EG_OFF+1;
SLOT->evs = 0;
break;
}
}
/* calcrate envelope */
return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
}
/* set algorithm connection */
static void set_algorithm( OPL_CH *CH)
{
int32_t *carrier = &outd[0];
CH->connect1 = CH->CON ? carrier : &feedback2;
CH->connect2 = carrier;
}
/* ---------- frequency counter for operater update ---------- */
static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
{
int ksr;
/* frequency step counter */
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if( SLOT->ksr != ksr )
{
SLOT->ksr = ksr;
/* attack , decay rate recalcration */
SLOT->evsa = SLOT->AR[ksr];
SLOT->evsd = SLOT->DR[ksr];
SLOT->evsr = SLOT->RR[ksr];
}
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
/* set multi,am,vib,EG-TYP,KSR,mul */
static inline void set_mul(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
SLOT->mul = MUL_TABLE[v&0x0f];
SLOT->KSR = (v&0x10) ? 0 : 2;
SLOT->eg_typ = (v&0x20)>>5;
SLOT->vib = (v&0x40);
SLOT->ams = (v&0x80);
CALC_FCSLOT(CH,SLOT);
}
/* set ksl & tl */
static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
SLOT->ksl = ksl ? 3-ksl : 31;
SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
if( !(OPL->mode&0x80) )
{ /* not CSM latch total level */
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
}
/* set attack rate & decay rate */
static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int ar = v>>4;
int dr = v&0x0f;
SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
SLOT->evsa = SLOT->AR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
SLOT->evsd = SLOT->DR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
}
/* set sustain level & release rate */
static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
{
OPL_CH *CH = &OPL->P_CH[slot/2];
OPL_SLOT *SLOT = &CH->SLOT[slot&1];
int sl = v>>4;
int rr = v & 0x0f;
SLOT->SL = SL_TABLE[sl];
if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
SLOT->RR = &OPL->DR_TABLE[rr<<2];
SLOT->evsr = SLOT->RR[SLOT->ksr];
if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
}
/* operator output calcrator */
#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
/* ---------- calcrate one of channel ---------- */
static inline void OPL_CALC_CH( OPL_CH *CH )
{
uint32_t env_out;
OPL_SLOT *SLOT;
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
if(CH->FB)
{
int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
CH->op1_out[1] = CH->op1_out[0];
*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
}
else
{
*CH->connect1 += OP_OUT(SLOT,env_out,0);
}
}else
{
CH->op1_out[1] = CH->op1_out[0];
CH->op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH->SLOT[SLOT2];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT(SLOT,env_out, feedback2);
}
}
/* ---------- calcrate rhythm block ---------- */
#define WHITE_NOISE_db 6.0
static inline void OPL_CALC_RH( OPL_CH *CH )
{
uint32_t env_tam,env_sd,env_top,env_hh;
int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
int32_t tone8;
OPL_SLOT *SLOT;
int env_out;
/* BD : same as FM serial mode and output level is large */
feedback2 = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
if(CH[6].FB)
{
int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
CH[6].op1_out[1] = CH[6].op1_out[0];
feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
}
else
{
feedback2 = OP_OUT(SLOT,env_out,0);
}
}else
{
feedback2 = 0;
CH[6].op1_out[1] = CH[6].op1_out[0];
CH[6].op1_out[0] = 0;
}
/* SLOT 2 */
SLOT = &CH[6].SLOT[SLOT2];
env_out=OPL_CALC_SLOT(SLOT);
if( env_out < EG_ENT-1 )
{
/* PG */
if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
else SLOT->Cnt += SLOT->Incr;
/* connectoion */
outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
}
// SD (17) = mul14[fnum7] + white noise
// TAM (15) = mul15[fnum8]
// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
// HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
env_tam=OPL_CALC_SLOT(SLOT8_1);
env_top=OPL_CALC_SLOT(SLOT8_2);
env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
/* PG */
if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
else SLOT7_2->Cnt += (CH[7].fc*8);
if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
else SLOT8_1->Cnt += SLOT8_1->Incr;
if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
else SLOT8_2->Cnt += (CH[8].fc*48);
tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
/* SD */
if( env_sd < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
/* TAM */
if( env_tam < EG_ENT-1 )
outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
/* TOP-CY */
if( env_top < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
/* HH */
if( env_hh < EG_ENT-1 )
outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
}
/* ----------- initialize time tabls ----------- */
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
{
int i;
double rate;
/* make attack rate & decay rate tables */
for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
for (i = 4;i <= 60;i++){
rate = OPL->freqbase; /* frequency rate */
if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
rate *= (double)(EG_ENT<<ENV_BITS);
OPL->AR_TABLE[i] = rate / ARRATE;
OPL->DR_TABLE[i] = rate / DRRATE;
}
for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
{
OPL->AR_TABLE[i] = EG_AED-1;
OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
}
#if 0
for (i = 0;i < 64 ;i++){ /* make for overflow area */
LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
}
#endif
}
/* ---------- generic table initialize ---------- */
static int OPLOpenTable( void )
{
int s,t;
double rate;
int i,j;
double pom;
/* allocate dynamic tables */
if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
return 0;
if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
{
free(TL_TABLE);
return 0;
}
if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
{
free(TL_TABLE);
free(SIN_TABLE);
return 0;
}
if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
{
free(TL_TABLE);
free(SIN_TABLE);
free(AMS_TABLE);
return 0;
}
/* make total level table */
for (t = 0;t < EG_ENT-1 ;t++){
rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
TL_TABLE[ t] = (int)rate;
TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
}
/* fill volume off area */
for ( t = EG_ENT-1; t < TL_MAX ;t++){
TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
}
/* make sinwave table (total level offet) */
/* degree 0 = degree 180 = off */
SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
for (s = 1;s <= SIN_ENT/4;s++){
pom = sin(2*PI*s/SIN_ENT); /* sin */
pom = 20*log10(1/pom); /* decibel */
j = pom / EG_STEP; /* TL_TABLE steps */
/* degree 0 - 90 , degree 180 - 90 : plus section */
SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
/* degree 180 - 270 , degree 360 - 270 : minus section */
SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
}
for (s = 0;s < SIN_ENT;s++)
{
SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
}
/* envelope counter -> envelope output table */
for (i=0; i<EG_ENT; i++)
{
/* ATTACK curve */
pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
ENV_CURVE[i] = (int)pom;
/* DECAY ,RELEASE curve */
ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
}
/* off */
ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
/* make LFO ams table */
for (i=0; i<AMS_ENT; i++)
{
pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
}
/* make LFO vibrate table */
for (i=0; i<VIB_ENT; i++)
{
/* 100cent = 1seminote = 6% ?? */
pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
}
return 1;
}
static void OPLCloseTable( void )
{
free(TL_TABLE);
free(SIN_TABLE);
free(AMS_TABLE);
free(VIB_TABLE);
}
/* CSM Key Control */
static inline void CSMKeyControll(OPL_CH *CH)
{
OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
/* all key off */
OPL_KEYOFF(slot1);
OPL_KEYOFF(slot2);
/* total level latch */
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
/* key on */
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(slot1);
OPL_KEYON(slot2);
}
/* ---------- opl initialize ---------- */
static void OPL_initialize(FM_OPL *OPL)
{
int fn;
/* frequency base */
OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
/* Timer base time */
OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
/* make time tables */
init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
/* make fnumber -> increment counter table */
for( fn=0 ; fn < 1024 ; fn++ )
{
OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
}
/* LFO freq.table */
OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
}
/* ---------- write a OPL registers ---------- */
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
{
OPL_CH *CH;
int slot;
int block_fnum;
switch(r&0xe0)
{
case 0x00: /* 00-1f:control */
switch(r&0x1f)
{
case 0x01:
/* wave selector enable */
OPL->wavesel = v&0x20;
if(!OPL->wavesel)
{
/* preset compatible mode */
int c;
for(c=0;c<OPL->max_ch;c++)
{
OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
}
}
return;
case 0x02: /* Timer 1 */
OPL->T[0] = (256-v)*4;
break;
case 0x03: /* Timer 2 */
OPL->T[1] = (256-v)*16;
return;
case 0x04: /* IRQ clear / mask and Timer enable */
if(v&0x80)
{ /* IRQ flag clear */
OPL_STATUS_RESET(OPL,0x7f);
}
else
{ /* set IRQ mask ,timer enable*/
uint8_t st1 = v&1;
uint8_t st2 = (v>>1)&1;
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
OPL_STATUS_RESET(OPL,v&0x78);
OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
/* timer 2 */
if(OPL->st[1] != st2)
{
double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
OPL->st[1] = st2;
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
}
/* timer 1 */
if(OPL->st[0] != st1)
{
double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
OPL->st[0] = st1;
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
}
}
return;
}
break;
case 0x20: /* am,vib,ksr,eg type,mul */
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_mul(OPL,slot,v);
return;
case 0x40:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_ksl_tl(OPL,slot,v);
return;
case 0x60:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_ar_dr(OPL,slot,v);
return;
case 0x80:
slot = slot_array[r&0x1f];
if(slot == -1) return;
set_sl_rr(OPL,slot,v);
return;
case 0xa0:
switch(r)
{
case 0xbd:
/* amsep,vibdep,r,bd,sd,tom,tc,hh */
{
uint8_t rkey = OPL->rhythm^v;
OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
OPL->rhythm = v&0x3f;
if(OPL->rhythm&0x20)
{
#if 0
usrintf_showmessage("OPL Rhythm mode select");
#endif
/* BD key on/off */
if(rkey&0x10)
{
if(v&0x10)
{
OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
}
else
{
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
}
}
/* SD key on/off */
if(rkey&0x08)
{
if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
}/* TAM key on/off */
if(rkey&0x04)
{
if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
}
/* TOP-CY key on/off */
if(rkey&0x02)
{
if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
}
/* HH key on/off */
if(rkey&0x01)
{
if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
}
}
}
return;
}
/* keyon,block,fnum */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
if(!(r&0x10))
{ /* a0-a8 */
block_fnum = (CH->block_fnum&0x1f00) | v;
}
else
{ /* b0-b8 */
int keyon = (v>>5)&1;
block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
if(CH->keyon != keyon)
{
if( (CH->keyon=keyon) )
{
CH->op1_out[0] = CH->op1_out[1] = 0;
OPL_KEYON(&CH->SLOT[SLOT1]);
OPL_KEYON(&CH->SLOT[SLOT2]);
}
else
{
OPL_KEYOFF(&CH->SLOT[SLOT1]);
OPL_KEYOFF(&CH->SLOT[SLOT2]);
}
}
}
/* update */
if(CH->block_fnum != block_fnum)
{
int blockRv = 7-(block_fnum>>10);
int fnum = block_fnum&0x3ff;
CH->block_fnum = block_fnum;
CH->ksl_base = KSL_TABLE[block_fnum>>6];
CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
CH->kcode = CH->block_fnum>>9;
if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
return;
case 0xc0:
/* FB,C */
if( (r&0x0f) > 8) return;
CH = &OPL->P_CH[r&0x0f];
{
int feedback = (v>>1)&7;
CH->FB = feedback ? (8+1) - feedback : 0;
CH->CON = v&1;
set_algorithm(CH);
}
return;
case 0xe0: /* wave type */
slot = slot_array[r&0x1f];
if(slot == -1) return;
CH = &OPL->P_CH[slot/2];
if(OPL->wavesel)
{
/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
}
return;
}
}
/* lock/unlock for common table */
static int OPL_LockTable(void)
{
num_lock++;
if(num_lock>1) return 0;
/* first time */
cur_chip = NULL;
/* allocate total level table (128kb space) */
if( !OPLOpenTable() )
{
num_lock--;
return -1;
}
return 0;
}
static void OPL_UnLockTable(void)
{
if(num_lock) num_lock--;
if(num_lock) return;
/* last time */
cur_chip = NULL;
OPLCloseTable();
}
/*******************************************************************************/
/* YM3812 local section */
/*******************************************************************************/
/* ---------- update one of chip ----------- */
void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
{
int i;
int data;
int16_t *buf = buffer;
uint32_t amsCnt = OPL->amsCnt;
uint32_t vibCnt = OPL->vibCnt;
uint8_t rhythm = OPL->rhythm&0x20;
OPL_CH *CH,*R_CH;
if( (void *)OPL != cur_chip ){
cur_chip = (void *)OPL;
/* channel pointers */
S_CH = OPL->P_CH;
E_CH = &S_CH[9];
/* rhythm slot */
SLOT7_1 = &S_CH[7].SLOT[SLOT1];
SLOT7_2 = &S_CH[7].SLOT[SLOT2];
SLOT8_1 = &S_CH[8].SLOT[SLOT1];
SLOT8_2 = &S_CH[8].SLOT[SLOT2];
/* LFO state */
amsIncr = OPL->amsIncr;
vibIncr = OPL->vibIncr;
ams_table = OPL->ams_table;
vib_table = OPL->vib_table;
}
R_CH = rhythm ? &S_CH[6] : E_CH;
for( i=0; i < length ; i++ )
{
/* channel A channel B channel C */
/* LFO */
ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
outd[0] = 0;
/* FM part */
for(CH=S_CH ; CH < R_CH ; CH++)
OPL_CALC_CH(CH);
/* Rythn part */
if(rhythm)
OPL_CALC_RH(S_CH);
/* limit check */
data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
/* store to sound buffer */
buf[i] = data >> OPL_OUTSB;
}
OPL->amsCnt = amsCnt;
OPL->vibCnt = vibCnt;
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
}
#endif
}
/* ---------- reset one of chip ---------- */
void OPLResetChip(FM_OPL *OPL)
{
int c,s;
int i;
/* reset chip */
OPL->mode = 0; /* normal mode */
OPL_STATUS_RESET(OPL,0x7f);
/* reset with register write */
OPLWriteReg(OPL,0x01,0); /* wabesel disable */
OPLWriteReg(OPL,0x02,0); /* Timer1 */
OPLWriteReg(OPL,0x03,0); /* Timer2 */
OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
/* reset operator parameter */
for( c = 0 ; c < OPL->max_ch ; c++ )
{
OPL_CH *CH = &OPL->P_CH[c];
/* OPL->P_CH[c].PAN = OPN_CENTER; */
for(s = 0 ; s < 2 ; s++ )
{
/* wave table */
CH->SLOT[s].wavetable = &SIN_TABLE[0];
/* CH->SLOT[s].evm = ENV_MOD_RR; */
CH->SLOT[s].evc = EG_OFF;
CH->SLOT[s].eve = EG_OFF+1;
CH->SLOT[s].evs = 0;
}
}
}
/* ---------- Create one of vietual YM3812 ---------- */
/* 'rate' is sampling rate and 'bufsiz' is the size of the */
FM_OPL *OPLCreate(int clock, int rate)
{
char *ptr;
FM_OPL *OPL;
int state_size;
int max_ch = 9; /* normaly 9 channels */
if( OPL_LockTable() ==-1) return NULL;
/* allocate OPL state space */
state_size = sizeof(FM_OPL);
state_size += sizeof(OPL_CH)*max_ch;
/* allocate memory block */
ptr = malloc(state_size);
if(ptr==NULL) return NULL;
/* clear */
memset(ptr,0,state_size);
OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
/* set channel state pointer */
OPL->clock = clock;
OPL->rate = rate;
OPL->max_ch = max_ch;
/* init grobal tables */
OPL_initialize(OPL);
/* reset chip */
OPLResetChip(OPL);
#ifdef OPL_OUTPUT_LOG
if(!opl_dbg_fp)
{
opl_dbg_fp = fopen("opllog.opl","wb");
opl_dbg_maxchip = 0;
}
if(opl_dbg_fp)
{
opl_dbg_opl[opl_dbg_maxchip] = OPL;
fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
type,
clock&0xff,
(clock/0x100)&0xff,
(clock/0x10000)&0xff,
(clock/0x1000000)&0xff);
opl_dbg_maxchip++;
}
#endif
return OPL;
}
/* ---------- Destroy one of vietual YM3812 ---------- */
void OPLDestroy(FM_OPL *OPL)
{
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
fclose(opl_dbg_fp);
opl_dbg_fp = NULL;
}
#endif
OPL_UnLockTable();
free(OPL);
}
/* ---------- Option handlers ---------- */
void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
{
OPL->TimerHandler = TimerHandler;
OPL->TimerParam = channelOffset;
}
/* ---------- YM3812 I/O interface ---------- */
int OPLWrite(FM_OPL *OPL,int a,int v)
{
if( !(a&1) )
{ /* address port */
OPL->address = v & 0xff;
}
else
{ /* data port */
if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
#ifdef OPL_OUTPUT_LOG
if(opl_dbg_fp)
{
for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
}
#endif
OPLWriteReg(OPL,OPL->address,v);
}
return OPL->status>>7;
}
unsigned char OPLRead(FM_OPL *OPL,int a)
{
if( !(a&1) )
{ /* status port */
return OPL->status & (OPL->statusmask|0x80);
}
/* data port */
switch(OPL->address)
{
case 0x05: /* KeyBoard IN */
return 0;
#if 0
case 0x0f: /* ADPCM-DATA */
return 0;
#endif
case 0x19: /* I/O DATA */
return 0;
case 0x1a: /* PCM-DATA */
return 0;
}
return 0;
}
int OPLTimerOver(FM_OPL *OPL,int c)
{
if( c )
{ /* Timer B */
OPL_STATUS_SET(OPL,0x20);
}
else
{ /* Timer A */
OPL_STATUS_SET(OPL,0x40);
/* CSM mode key,TL control */
if( OPL->mode & 0x80 )
{ /* CSM mode total level latch and auto key on */
int ch;
if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
for(ch=0;ch<9;ch++)
CSMKeyControll( &OPL->P_CH[ch] );
}
}
/* reload timer */
if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
return OPL->status>>7;
}
|