aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/raspi.c
blob: 09bf02ec9c3ccdabd33a83fa1f6481204c47dc4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
 * Raspberry Pi emulation (c) 2012 Gregory Estrade
 * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
 *
 * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
 * Written by Andrew Baumann
 *
 * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
 * Upstream code cleanup (c) 2018 Pekka Enberg
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "cpu.h"
#include "hw/arm/bcm2836.h"
#include "hw/registerfields.h"
#include "qemu/error-report.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/arm/boot.h"
#include "sysemu/sysemu.h"

#define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
#define MVBAR_ADDR      0x400 /* secure vectors */
#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
#define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */

/* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
#define MACH_TYPE_BCM2708   3138

typedef struct RaspiMachineState {
    /*< private >*/
    MachineState parent_obj;
    /*< public >*/
    BCM283XState soc;
} RaspiMachineState;

typedef struct RaspiMachineClass {
    /*< private >*/
    MachineClass parent_obj;
    /*< public >*/
    uint32_t board_rev;
} RaspiMachineClass;

#define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
#define RASPI_MACHINE(obj) \
    OBJECT_CHECK(RaspiMachineState, (obj), TYPE_RASPI_MACHINE)

#define RASPI_MACHINE_CLASS(klass) \
     OBJECT_CLASS_CHECK(RaspiMachineClass, (klass), TYPE_RASPI_MACHINE)
#define RASPI_MACHINE_GET_CLASS(obj) \
     OBJECT_GET_CLASS(RaspiMachineClass, (obj), TYPE_RASPI_MACHINE)

/*
 * Board revision codes:
 * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
 */
FIELD(REV_CODE, REVISION,           0, 4);
FIELD(REV_CODE, TYPE,               4, 8);
FIELD(REV_CODE, PROCESSOR,         12, 4);
FIELD(REV_CODE, MANUFACTURER,      16, 4);
FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
FIELD(REV_CODE, STYLE,             23, 1);

static uint64_t board_ram_size(uint32_t board_rev)
{
    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
    return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
}

static int board_processor_id(uint32_t board_rev)
{
    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
    return FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
}

static int board_version(uint32_t board_rev)
{
    return board_processor_id(board_rev) + 1;
}

static const char *board_soc_type(uint32_t board_rev)
{
    static const char *soc_types[] = {
        NULL, TYPE_BCM2836, TYPE_BCM2837,
    };
    int proc_id = board_processor_id(board_rev);

    if (proc_id >= ARRAY_SIZE(soc_types) || !soc_types[proc_id]) {
        error_report("Unsupported processor id '%d' (board revision: 0x%x)",
                     proc_id, board_rev);
        exit(1);
    }
    return soc_types[proc_id];
}

static int cores_count(uint32_t board_rev)
{
    static const int soc_cores_count[] = {
        0, BCM283X_NCPUS, BCM283X_NCPUS,
    };
    int proc_id = board_processor_id(board_rev);

    if (proc_id >= ARRAY_SIZE(soc_cores_count) || !soc_cores_count[proc_id]) {
        error_report("Unsupported processor id '%d' (board revision: 0x%x)",
                     proc_id, board_rev);
        exit(1);
    }
    return soc_cores_count[proc_id];
}

static const char *board_type(uint32_t board_rev)
{
    static const char *types[] = {
        "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
        "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
    };
    assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
    int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
    if (bt >= ARRAY_SIZE(types) || !types[bt]) {
        return "Unknown";
    }
    return types[bt];
}

static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
{
    static const uint32_t smpboot[] = {
        0xe1a0e00f, /*    mov     lr, pc */
        0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
        0xee100fb0, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
        0xe7e10050, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
        0xe59f5014, /*    ldr     r5, =0x400000CC      ;load mbox base */
        0xe320f001, /* 1: yield */
        0xe7953200, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core*/
        0xe3530000, /*    cmp     r3, #0               ;spin while zero */
        0x0afffffb, /*    beq     1b */
        0xe7853200, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
        0xe12fff13, /*    bx      r3                   ;jump to target */
        0x400000cc, /* (constant: mailbox 3 read/clear base) */
    };

    /* check that we don't overrun board setup vectors */
    QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
    /* check that board setup address is correctly relocated */
    QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
                      || (BOARDSETUP_ADDR >> 4) >= 0x100);

    rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
                          info->smp_loader_start,
                          arm_boot_address_space(cpu, info));
}

static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
{
    AddressSpace *as = arm_boot_address_space(cpu, info);
    /* Unlike the AArch32 version we don't need to call the board setup hook.
     * The mechanism for doing the spin-table is also entirely different.
     * We must have four 64-bit fields at absolute addresses
     * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
     * our CPUs, and which we must ensure are zero initialized before
     * the primary CPU goes into the kernel. We put these variables inside
     * a rom blob, so that the reset for ROM contents zeroes them for us.
     */
    static const uint32_t smpboot[] = {
        0xd2801b05, /*        mov     x5, 0xd8 */
        0xd53800a6, /*        mrs     x6, mpidr_el1 */
        0x924004c6, /*        and     x6, x6, #0x3 */
        0xd503205f, /* spin:  wfe */
        0xf86678a4, /*        ldr     x4, [x5,x6,lsl #3] */
        0xb4ffffc4, /*        cbz     x4, spin */
        0xd2800000, /*        mov     x0, #0x0 */
        0xd2800001, /*        mov     x1, #0x0 */
        0xd2800002, /*        mov     x2, #0x0 */
        0xd2800003, /*        mov     x3, #0x0 */
        0xd61f0080, /*        br      x4 */
    };

    static const uint64_t spintables[] = {
        0, 0, 0, 0
    };

    rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
                          info->smp_loader_start, as);
    rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
                          SPINTABLE_ADDR, as);
}

static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
{
    arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
}

static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
{
    CPUState *cs = CPU(cpu);
    cpu_set_pc(cs, info->smp_loader_start);
}

static void setup_boot(MachineState *machine, int version, size_t ram_size)
{
    static struct arm_boot_info binfo;
    int r;

    binfo.board_id = MACH_TYPE_BCM2708;
    binfo.ram_size = ram_size;
    binfo.nb_cpus = machine->smp.cpus;

    if (version <= 2) {
        /* The rpi1 and 2 require some custom setup code to run in Secure
         * mode before booting a kernel (to set up the SMC vectors so
         * that we get a no-op SMC; this is used by Linux to call the
         * firmware for some cache maintenance operations.
         * The rpi3 doesn't need this.
         */
        binfo.board_setup_addr = BOARDSETUP_ADDR;
        binfo.write_board_setup = write_board_setup;
        binfo.secure_board_setup = true;
        binfo.secure_boot = true;
    }

    /* Pi2 and Pi3 requires SMP setup */
    if (version >= 2) {
        binfo.smp_loader_start = SMPBOOT_ADDR;
        if (version == 2) {
            binfo.write_secondary_boot = write_smpboot;
        } else {
            binfo.write_secondary_boot = write_smpboot64;
        }
        binfo.secondary_cpu_reset_hook = reset_secondary;
    }

    /* If the user specified a "firmware" image (e.g. UEFI), we bypass
     * the normal Linux boot process
     */
    if (machine->firmware) {
        hwaddr firmware_addr = version == 3 ? FIRMWARE_ADDR_3 : FIRMWARE_ADDR_2;
        /* load the firmware image (typically kernel.img) */
        r = load_image_targphys(machine->firmware, firmware_addr,
                                ram_size - firmware_addr);
        if (r < 0) {
            error_report("Failed to load firmware from %s", machine->firmware);
            exit(1);
        }

        binfo.entry = firmware_addr;
        binfo.firmware_loaded = true;
    }

    arm_load_kernel(ARM_CPU(first_cpu), machine, &binfo);
}

static void raspi_machine_init(MachineState *machine)
{
    RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
    RaspiMachineState *s = RASPI_MACHINE(machine);
    uint32_t board_rev = mc->board_rev;
    int version = board_version(board_rev);
    uint64_t ram_size = board_ram_size(board_rev);
    uint32_t vcram_size;
    DriveInfo *di;
    BlockBackend *blk;
    BusState *bus;
    DeviceState *carddev;

    if (machine->ram_size != ram_size) {
        char *size_str = size_to_str(ram_size);
        error_report("Invalid RAM size, should be %s", size_str);
        g_free(size_str);
        exit(1);
    }

    /* FIXME: Remove when we have custom CPU address space support */
    memory_region_add_subregion_overlap(get_system_memory(), 0,
                                        machine->ram, 0);

    /* Setup the SOC */
    object_initialize_child(OBJECT(machine), "soc", &s->soc,
                            board_soc_type(board_rev));
    object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
    object_property_set_int(OBJECT(&s->soc), board_rev, "board-rev",
                            &error_abort);
    qdev_realize(DEVICE(&s->soc), NULL, &error_abort);

    /* Create and plug in the SD cards */
    di = drive_get_next(IF_SD);
    blk = di ? blk_by_legacy_dinfo(di) : NULL;
    bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
    if (bus == NULL) {
        error_report("No SD bus found in SOC object");
        exit(1);
    }
    carddev = qdev_new(TYPE_SD_CARD);
    qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
    qdev_realize_and_unref(carddev, bus, &error_fatal);

    vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
                                          &error_abort);
    setup_boot(machine, version, machine->ram_size - vcram_size);
}

static void raspi_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
    RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    uint32_t board_rev = (uint32_t)(uintptr_t)data;

    rmc->board_rev = board_rev;
    mc->desc = g_strdup_printf("Raspberry Pi %s", board_type(board_rev));
    mc->init = raspi_machine_init;
    mc->block_default_type = IF_SD;
    mc->no_parallel = 1;
    mc->no_floppy = 1;
    mc->no_cdrom = 1;
    mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
    mc->default_ram_size = board_ram_size(board_rev);
    mc->default_ram_id = "ram";
    if (board_version(board_rev) == 2) {
        mc->ignore_memory_transaction_failures = true;
    }
};

static const TypeInfo raspi_machine_types[] = {
    {
        .name           = MACHINE_TYPE_NAME("raspi2"),
        .parent         = TYPE_RASPI_MACHINE,
        .class_init     = raspi_machine_class_init,
        .class_data     = (void *)0xa21041,
#ifdef TARGET_AARCH64
    }, {
        .name           = MACHINE_TYPE_NAME("raspi3"),
        .parent         = TYPE_RASPI_MACHINE,
        .class_init     = raspi_machine_class_init,
        .class_data     = (void *)0xa02082,
#endif
    }, {
        .name           = TYPE_RASPI_MACHINE,
        .parent         = TYPE_MACHINE,
        .instance_size  = sizeof(RaspiMachineState),
        .class_size     = sizeof(RaspiMachineClass),
        .abstract       = true,
    }
};

DEFINE_TYPES(raspi_machine_types)