1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
|
/*
* ARM kernel loader.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include <libfdt.h>
#include "hw/hw.h"
#include "hw/arm/boot.h"
#include "hw/arm/linux-boot-if.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "sysemu/device_tree.h"
#include "qemu/config-file.h"
#include "qemu/option.h"
#include "exec/address-spaces.h"
#include "qemu/units.h"
/* Kernel boot protocol is specified in the kernel docs
* Documentation/arm/Booting and Documentation/arm64/booting.txt
* They have different preferred image load offsets from system RAM base.
*/
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_NOLOAD_ADDR 0x02000000
#define KERNEL_LOAD_ADDR 0x00010000
#define KERNEL64_LOAD_ADDR 0x00080000
#define ARM64_TEXT_OFFSET_OFFSET 8
#define ARM64_MAGIC_OFFSET 56
#define BOOTLOADER_MAX_SIZE (4 * KiB)
AddressSpace *arm_boot_address_space(ARMCPU *cpu,
const struct arm_boot_info *info)
{
/* Return the address space to use for bootloader reads and writes.
* We prefer the secure address space if the CPU has it and we're
* going to boot the guest into it.
*/
int asidx;
CPUState *cs = CPU(cpu);
if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
asidx = ARMASIdx_S;
} else {
asidx = ARMASIdx_NS;
}
return cpu_get_address_space(cs, asidx);
}
typedef enum {
FIXUP_NONE = 0, /* do nothing */
FIXUP_TERMINATOR, /* end of insns */
FIXUP_BOARDID, /* overwrite with board ID number */
FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
FIXUP_BOOTREG, /* overwrite with boot register address */
FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
FIXUP_MAX,
} FixupType;
typedef struct ARMInsnFixup {
uint32_t insn;
FixupType fixup;
} ARMInsnFixup;
static const ARMInsnFixup bootloader_aarch64[] = {
{ 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
{ 0xaa1f03e1 }, /* mov x1, xzr */
{ 0xaa1f03e2 }, /* mov x2, xzr */
{ 0xaa1f03e3 }, /* mov x3, xzr */
{ 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
{ 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
{ 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
{ 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
{ 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
{ 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
{ 0, FIXUP_TERMINATOR }
};
/* A very small bootloader: call the board-setup code (if needed),
* set r0-r2, then jump to the kernel.
* If we're not calling boot setup code then we don't copy across
* the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
*/
static const ARMInsnFixup bootloader[] = {
{ 0xe28fe004 }, /* add lr, pc, #4 */
{ 0xe51ff004 }, /* ldr pc, [pc, #-4] */
{ 0, FIXUP_BOARD_SETUP },
#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
{ 0xe3a00000 }, /* mov r0, #0 */
{ 0xe59f1004 }, /* ldr r1, [pc, #4] */
{ 0xe59f2004 }, /* ldr r2, [pc, #4] */
{ 0xe59ff004 }, /* ldr pc, [pc, #4] */
{ 0, FIXUP_BOARDID },
{ 0, FIXUP_ARGPTR_LO },
{ 0, FIXUP_ENTRYPOINT_LO },
{ 0, FIXUP_TERMINATOR }
};
/* Handling for secondary CPU boot in a multicore system.
* Unlike the uniprocessor/primary CPU boot, this is platform
* dependent. The default code here is based on the secondary
* CPU boot protocol used on realview/vexpress boards, with
* some parameterisation to increase its flexibility.
* QEMU platform models for which this code is not appropriate
* should override write_secondary_boot and secondary_cpu_reset_hook
* instead.
*
* This code enables the interrupt controllers for the secondary
* CPUs and then puts all the secondary CPUs into a loop waiting
* for an interprocessor interrupt and polling a configurable
* location for the kernel secondary CPU entry point.
*/
#define DSB_INSN 0xf57ff04f
#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
static const ARMInsnFixup smpboot[] = {
{ 0xe59f2028 }, /* ldr r2, gic_cpu_if */
{ 0xe59f0028 }, /* ldr r0, bootreg_addr */
{ 0xe3a01001 }, /* mov r1, #1 */
{ 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
{ 0xe3a010ff }, /* mov r1, #0xff */
{ 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
{ 0, FIXUP_DSB }, /* dsb */
{ 0xe320f003 }, /* wfi */
{ 0xe5901000 }, /* ldr r1, [r0] */
{ 0xe1110001 }, /* tst r1, r1 */
{ 0x0afffffb }, /* beq <wfi> */
{ 0xe12fff11 }, /* bx r1 */
{ 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
{ 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
{ 0, FIXUP_TERMINATOR }
};
static void write_bootloader(const char *name, hwaddr addr,
const ARMInsnFixup *insns, uint32_t *fixupcontext,
AddressSpace *as)
{
/* Fix up the specified bootloader fragment and write it into
* guest memory using rom_add_blob_fixed(). fixupcontext is
* an array giving the values to write in for the fixup types
* which write a value into the code array.
*/
int i, len;
uint32_t *code;
len = 0;
while (insns[len].fixup != FIXUP_TERMINATOR) {
len++;
}
code = g_new0(uint32_t, len);
for (i = 0; i < len; i++) {
uint32_t insn = insns[i].insn;
FixupType fixup = insns[i].fixup;
switch (fixup) {
case FIXUP_NONE:
break;
case FIXUP_BOARDID:
case FIXUP_BOARD_SETUP:
case FIXUP_ARGPTR_LO:
case FIXUP_ARGPTR_HI:
case FIXUP_ENTRYPOINT_LO:
case FIXUP_ENTRYPOINT_HI:
case FIXUP_GIC_CPU_IF:
case FIXUP_BOOTREG:
case FIXUP_DSB:
insn = fixupcontext[fixup];
break;
default:
abort();
}
code[i] = tswap32(insn);
}
assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
g_free(code);
}
static void default_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
uint32_t fixupcontext[FIXUP_MAX];
AddressSpace *as = arm_boot_address_space(cpu, info);
fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
fixupcontext[FIXUP_DSB] = DSB_INSN;
} else {
fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
}
write_bootloader("smpboot", info->smp_loader_start,
smpboot, fixupcontext, as);
}
void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
const struct arm_boot_info *info,
hwaddr mvbar_addr)
{
AddressSpace *as = arm_boot_address_space(cpu, info);
int n;
uint32_t mvbar_blob[] = {
/* mvbar_addr: secure monitor vectors
* Default unimplemented and unused vectors to spin. Makes it
* easier to debug (as opposed to the CPU running away).
*/
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xe1b0f00e, /* movs pc, lr ;SMC exception return */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
0xeafffffe, /* (spin) */
};
uint32_t board_setup_blob[] = {
/* board setup addr */
0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
0xe1a0100e, /* mov r1, lr ;save LR across SMC */
0xe1600070, /* smc #0 ;call monitor to flush SCR */
0xe1a0f001, /* mov pc, r1 ;return */
};
/* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
/* check that these blobs don't overlap */
assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
|| (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
mvbar_blob[n] = tswap32(mvbar_blob[n]);
}
rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
mvbar_addr, as);
for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
board_setup_blob[n] = tswap32(board_setup_blob[n]);
}
rom_add_blob_fixed_as("board-setup", board_setup_blob,
sizeof(board_setup_blob), info->board_setup_addr, as);
}
static void default_reset_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
AddressSpace *as = arm_boot_address_space(cpu, info);
CPUState *cs = CPU(cpu);
address_space_stl_notdirty(as, info->smp_bootreg_addr,
0, MEMTXATTRS_UNSPECIFIED, NULL);
cpu_set_pc(cs, info->smp_loader_start);
}
static inline bool have_dtb(const struct arm_boot_info *info)
{
return info->dtb_filename || info->get_dtb;
}
#define WRITE_WORD(p, value) do { \
address_space_stl_notdirty(as, p, value, \
MEMTXATTRS_UNSPECIFIED, NULL); \
p += 4; \
} while (0)
static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
{
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
hwaddr p;
p = base + KERNEL_ARGS_ADDR;
/* ATAG_CORE */
WRITE_WORD(p, 5);
WRITE_WORD(p, 0x54410001);
WRITE_WORD(p, 1);
WRITE_WORD(p, 0x1000);
WRITE_WORD(p, 0);
/* ATAG_MEM */
/* TODO: handle multiple chips on one ATAG list */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54410002);
WRITE_WORD(p, info->ram_size);
WRITE_WORD(p, info->loader_start);
if (initrd_size) {
/* ATAG_INITRD2 */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54420005);
WRITE_WORD(p, info->initrd_start);
WRITE_WORD(p, initrd_size);
}
if (info->kernel_cmdline && *info->kernel_cmdline) {
/* ATAG_CMDLINE */
int cmdline_size;
cmdline_size = strlen(info->kernel_cmdline);
address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
(const uint8_t *)info->kernel_cmdline,
cmdline_size + 1);
cmdline_size = (cmdline_size >> 2) + 1;
WRITE_WORD(p, cmdline_size + 2);
WRITE_WORD(p, 0x54410009);
p += cmdline_size * 4;
}
if (info->atag_board) {
/* ATAG_BOARD */
int atag_board_len;
uint8_t atag_board_buf[0x1000];
atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
WRITE_WORD(p, (atag_board_len + 8) >> 2);
WRITE_WORD(p, 0x414f4d50);
address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
atag_board_buf, atag_board_len);
p += atag_board_len;
}
/* ATAG_END */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
}
static void set_kernel_args_old(const struct arm_boot_info *info,
AddressSpace *as)
{
hwaddr p;
const char *s;
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
/* see linux/include/asm-arm/setup.h */
p = base + KERNEL_ARGS_ADDR;
/* page_size */
WRITE_WORD(p, 4096);
/* nr_pages */
WRITE_WORD(p, info->ram_size / 4096);
/* ramdisk_size */
WRITE_WORD(p, 0);
#define FLAG_READONLY 1
#define FLAG_RDLOAD 4
#define FLAG_RDPROMPT 8
/* flags */
WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
/* rootdev */
WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
/* video_num_cols */
WRITE_WORD(p, 0);
/* video_num_rows */
WRITE_WORD(p, 0);
/* video_x */
WRITE_WORD(p, 0);
/* video_y */
WRITE_WORD(p, 0);
/* memc_control_reg */
WRITE_WORD(p, 0);
/* unsigned char sounddefault */
/* unsigned char adfsdrives */
/* unsigned char bytes_per_char_h */
/* unsigned char bytes_per_char_v */
WRITE_WORD(p, 0);
/* pages_in_bank[4] */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
/* pages_in_vram */
WRITE_WORD(p, 0);
/* initrd_start */
if (initrd_size) {
WRITE_WORD(p, info->initrd_start);
} else {
WRITE_WORD(p, 0);
}
/* initrd_size */
WRITE_WORD(p, initrd_size);
/* rd_start */
WRITE_WORD(p, 0);
/* system_rev */
WRITE_WORD(p, 0);
/* system_serial_low */
WRITE_WORD(p, 0);
/* system_serial_high */
WRITE_WORD(p, 0);
/* mem_fclk_21285 */
WRITE_WORD(p, 0);
/* zero unused fields */
while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
WRITE_WORD(p, 0);
}
s = info->kernel_cmdline;
if (s) {
address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
(const uint8_t *)s, strlen(s) + 1);
} else {
WRITE_WORD(p, 0);
}
}
static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
uint32_t scells, hwaddr mem_len,
int numa_node_id)
{
char *nodename;
int ret;
nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
scells, mem_len);
if (ret < 0) {
goto out;
}
/* only set the NUMA ID if it is specified */
if (numa_node_id >= 0) {
ret = qemu_fdt_setprop_cell(fdt, nodename,
"numa-node-id", numa_node_id);
}
out:
g_free(nodename);
return ret;
}
static void fdt_add_psci_node(void *fdt)
{
uint32_t cpu_suspend_fn;
uint32_t cpu_off_fn;
uint32_t cpu_on_fn;
uint32_t migrate_fn;
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
const char *psci_method;
int64_t psci_conduit;
int rc;
psci_conduit = object_property_get_int(OBJECT(armcpu),
"psci-conduit",
&error_abort);
switch (psci_conduit) {
case QEMU_PSCI_CONDUIT_DISABLED:
return;
case QEMU_PSCI_CONDUIT_HVC:
psci_method = "hvc";
break;
case QEMU_PSCI_CONDUIT_SMC:
psci_method = "smc";
break;
default:
g_assert_not_reached();
}
/*
* If /psci node is present in provided DTB, assume that no fixup
* is necessary and all PSCI configuration should be taken as-is
*/
rc = fdt_path_offset(fdt, "/psci");
if (rc >= 0) {
return;
}
qemu_fdt_add_subnode(fdt, "/psci");
if (armcpu->psci_version == 2) {
const char comp[] = "arm,psci-0.2\0arm,psci";
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
} else {
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
}
} else {
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
}
/* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
* to the instruction that should be used to invoke PSCI functions.
* However, the device tree binding uses 'method' instead, so that is
* what we should use here.
*/
qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
}
int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
hwaddr addr_limit, AddressSpace *as)
{
void *fdt = NULL;
int size, rc, n = 0;
uint32_t acells, scells;
unsigned int i;
hwaddr mem_base, mem_len;
char **node_path;
Error *err = NULL;
if (binfo->dtb_filename) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
if (!filename) {
fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
goto fail;
}
fdt = load_device_tree(filename, &size);
if (!fdt) {
fprintf(stderr, "Couldn't open dtb file %s\n", filename);
g_free(filename);
goto fail;
}
g_free(filename);
} else {
fdt = binfo->get_dtb(binfo, &size);
if (!fdt) {
fprintf(stderr, "Board was unable to create a dtb blob\n");
goto fail;
}
}
if (addr_limit > addr && size > (addr_limit - addr)) {
/* Installing the device tree blob at addr would exceed addr_limit.
* Whether this constitutes failure is up to the caller to decide,
* so just return 0 as size, i.e., no error.
*/
g_free(fdt);
return 0;
}
acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
NULL, &error_fatal);
scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
NULL, &error_fatal);
if (acells == 0 || scells == 0) {
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
goto fail;
}
if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
/* This is user error so deserves a friendlier error message
* than the failure of setprop_sized_cells would provide
*/
fprintf(stderr, "qemu: dtb file not compatible with "
"RAM size > 4GB\n");
goto fail;
}
/* nop all root nodes matching /memory or /memory@unit-address */
node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
if (err) {
error_report_err(err);
goto fail;
}
while (node_path[n]) {
if (g_str_has_prefix(node_path[n], "/memory")) {
qemu_fdt_nop_node(fdt, node_path[n]);
}
n++;
}
g_strfreev(node_path);
if (nb_numa_nodes > 0) {
mem_base = binfo->loader_start;
for (i = 0; i < nb_numa_nodes; i++) {
mem_len = numa_info[i].node_mem;
rc = fdt_add_memory_node(fdt, acells, mem_base,
scells, mem_len, i);
if (rc < 0) {
fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
mem_base);
goto fail;
}
mem_base += mem_len;
}
} else {
rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
scells, binfo->ram_size, -1);
if (rc < 0) {
fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
binfo->loader_start);
goto fail;
}
}
rc = fdt_path_offset(fdt, "/chosen");
if (rc < 0) {
qemu_fdt_add_subnode(fdt, "/chosen");
}
if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
binfo->kernel_cmdline);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n");
goto fail;
}
}
if (binfo->initrd_size) {
rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
binfo->initrd_start);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
goto fail;
}
rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
binfo->initrd_start + binfo->initrd_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
goto fail;
}
}
fdt_add_psci_node(fdt);
if (binfo->modify_dtb) {
binfo->modify_dtb(binfo, fdt);
}
qemu_fdt_dumpdtb(fdt, size);
/* Put the DTB into the memory map as a ROM image: this will ensure
* the DTB is copied again upon reset, even if addr points into RAM.
*/
rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
g_free(fdt);
return size;
fail:
g_free(fdt);
return -1;
}
static void do_cpu_reset(void *opaque)
{
ARMCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
const struct arm_boot_info *info = env->boot_info;
cpu_reset(cs);
if (info) {
if (!info->is_linux) {
int i;
/* Jump to the entry point. */
uint64_t entry = info->entry;
switch (info->endianness) {
case ARM_ENDIANNESS_LE:
env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
for (i = 1; i < 4; ++i) {
env->cp15.sctlr_el[i] &= ~SCTLR_EE;
}
env->uncached_cpsr &= ~CPSR_E;
break;
case ARM_ENDIANNESS_BE8:
env->cp15.sctlr_el[1] |= SCTLR_E0E;
for (i = 1; i < 4; ++i) {
env->cp15.sctlr_el[i] |= SCTLR_EE;
}
env->uncached_cpsr |= CPSR_E;
break;
case ARM_ENDIANNESS_BE32:
env->cp15.sctlr_el[1] |= SCTLR_B;
break;
case ARM_ENDIANNESS_UNKNOWN:
break; /* Board's decision */
default:
g_assert_not_reached();
}
cpu_set_pc(cs, entry);
} else {
/* If we are booting Linux then we need to check whether we are
* booting into secure or non-secure state and adjust the state
* accordingly. Out of reset, ARM is defined to be in secure state
* (SCR.NS = 0), we change that here if non-secure boot has been
* requested.
*/
if (arm_feature(env, ARM_FEATURE_EL3)) {
/* AArch64 is defined to come out of reset into EL3 if enabled.
* If we are booting Linux then we need to adjust our EL as
* Linux expects us to be in EL2 or EL1. AArch32 resets into
* SVC, which Linux expects, so no privilege/exception level to
* adjust.
*/
if (env->aarch64) {
env->cp15.scr_el3 |= SCR_RW;
if (arm_feature(env, ARM_FEATURE_EL2)) {
env->cp15.hcr_el2 |= HCR_RW;
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
/* AArch64 kernels never boot in secure mode */
assert(!info->secure_boot);
/* This hook is only supported for AArch32 currently:
* bootloader_aarch64[] will not call the hook, and
* the code above has already dropped us into EL2 or EL1.
*/
assert(!info->secure_board_setup);
}
if (arm_feature(env, ARM_FEATURE_EL2)) {
/* If we have EL2 then Linux expects the HVC insn to work */
env->cp15.scr_el3 |= SCR_HCE;
}
/* Set to non-secure if not a secure boot */
if (!info->secure_boot &&
(cs != first_cpu || !info->secure_board_setup)) {
/* Linux expects non-secure state */
env->cp15.scr_el3 |= SCR_NS;
}
}
if (!env->aarch64 && !info->secure_boot &&
arm_feature(env, ARM_FEATURE_EL2)) {
/*
* This is an AArch32 boot not to Secure state, and
* we have Hyp mode available, so boot the kernel into
* Hyp mode. This is not how the CPU comes out of reset,
* so we need to manually put it there.
*/
cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
}
if (cs == first_cpu) {
AddressSpace *as = arm_boot_address_space(cpu, info);
cpu_set_pc(cs, info->loader_start);
if (!have_dtb(info)) {
if (old_param) {
set_kernel_args_old(info, as);
} else {
set_kernel_args(info, as);
}
}
} else {
info->secondary_cpu_reset_hook(cpu, info);
}
}
}
}
/**
* load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
* by key.
* @fw_cfg: The firmware config instance to store the data in.
* @size_key: The firmware config key to store the size of the loaded
* data under, with fw_cfg_add_i32().
* @data_key: The firmware config key to store the loaded data under,
* with fw_cfg_add_bytes().
* @image_name: The name of the image file to load. If it is NULL, the
* function returns without doing anything.
* @try_decompress: Whether the image should be decompressed (gunzipped) before
* adding it to fw_cfg. If decompression fails, the image is
* loaded as-is.
*
* In case of failure, the function prints an error message to stderr and the
* process exits with status 1.
*/
static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
uint16_t data_key, const char *image_name,
bool try_decompress)
{
size_t size = -1;
uint8_t *data;
if (image_name == NULL) {
return;
}
if (try_decompress) {
size = load_image_gzipped_buffer(image_name,
LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
}
if (size == (size_t)-1) {
gchar *contents;
gsize length;
if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
error_report("failed to load \"%s\"", image_name);
exit(1);
}
size = length;
data = (uint8_t *)contents;
}
fw_cfg_add_i32(fw_cfg, size_key, size);
fw_cfg_add_bytes(fw_cfg, data_key, data, size);
}
static int do_arm_linux_init(Object *obj, void *opaque)
{
if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
struct arm_boot_info *info = opaque;
if (albifc->arm_linux_init) {
albifc->arm_linux_init(albif, info->secure_boot);
}
}
return 0;
}
static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
uint64_t *lowaddr, uint64_t *highaddr,
int elf_machine, AddressSpace *as)
{
bool elf_is64;
union {
Elf32_Ehdr h32;
Elf64_Ehdr h64;
} elf_header;
int data_swab = 0;
bool big_endian;
int64_t ret = -1;
Error *err = NULL;
load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
if (err) {
error_free(err);
return ret;
}
if (elf_is64) {
big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
info->endianness = big_endian ? ARM_ENDIANNESS_BE8
: ARM_ENDIANNESS_LE;
} else {
big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
if (big_endian) {
if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
info->endianness = ARM_ENDIANNESS_BE8;
} else {
info->endianness = ARM_ENDIANNESS_BE32;
/* In BE32, the CPU has a different view of the per-byte
* address map than the rest of the system. BE32 ELF files
* are organised such that they can be programmed through
* the CPU's per-word byte-reversed view of the world. QEMU
* however loads ELF files independently of the CPU. So
* tell the ELF loader to byte reverse the data for us.
*/
data_swab = 2;
}
} else {
info->endianness = ARM_ENDIANNESS_LE;
}
}
ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
pentry, lowaddr, highaddr, big_endian, elf_machine,
1, data_swab, as);
if (ret <= 0) {
/* The header loaded but the image didn't */
exit(1);
}
return ret;
}
static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
hwaddr *entry, AddressSpace *as)
{
hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
uint64_t kernel_size = 0;
uint8_t *buffer;
int size;
/* On aarch64, it's the bootloader's job to uncompress the kernel. */
size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
&buffer);
if (size < 0) {
gsize len;
/* Load as raw file otherwise */
if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
return -1;
}
size = len;
}
/* check the arm64 magic header value -- very old kernels may not have it */
if (size > ARM64_MAGIC_OFFSET + 4 &&
memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
uint64_t hdrvals[2];
/* The arm64 Image header has text_offset and image_size fields at 8 and
* 16 bytes into the Image header, respectively. The text_offset field
* is only valid if the image_size is non-zero.
*/
memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
kernel_size = le64_to_cpu(hdrvals[1]);
if (kernel_size != 0) {
kernel_load_offset = le64_to_cpu(hdrvals[0]);
/*
* We write our startup "bootloader" at the very bottom of RAM,
* so that bit can't be used for the image. Luckily the Image
* format specification is that the image requests only an offset
* from a 2MB boundary, not an absolute load address. So if the
* image requests an offset that might mean it overlaps with the
* bootloader, we can just load it starting at 2MB+offset rather
* than 0MB + offset.
*/
if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
kernel_load_offset += 2 * MiB;
}
}
}
/*
* Kernels before v3.17 don't populate the image_size field, and
* raw images have no header. For those our best guess at the size
* is the size of the Image file itself.
*/
if (kernel_size == 0) {
kernel_size = size;
}
*entry = mem_base + kernel_load_offset;
rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
g_free(buffer);
return kernel_size;
}
static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
struct arm_boot_info *info)
{
/* Set up for a direct boot of a kernel image file. */
CPUState *cs;
AddressSpace *as = arm_boot_address_space(cpu, info);
int kernel_size;
int initrd_size;
int is_linux = 0;
uint64_t elf_entry;
/* Addresses of first byte used and first byte not used by the image */
uint64_t image_low_addr, image_high_addr;
int elf_machine;
hwaddr entry;
static const ARMInsnFixup *primary_loader;
uint64_t ram_end = info->loader_start + info->ram_size;
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
primary_loader = bootloader_aarch64;
elf_machine = EM_AARCH64;
} else {
primary_loader = bootloader;
if (!info->write_board_setup) {
primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
}
elf_machine = EM_ARM;
}
if (!info->secondary_cpu_reset_hook) {
info->secondary_cpu_reset_hook = default_reset_secondary;
}
if (!info->write_secondary_boot) {
info->write_secondary_boot = default_write_secondary;
}
if (info->nb_cpus == 0)
info->nb_cpus = 1;
/* Assume that raw images are linux kernels, and ELF images are not. */
kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
&image_high_addr, elf_machine, as);
if (kernel_size > 0 && have_dtb(info)) {
/*
* If there is still some room left at the base of RAM, try and put
* the DTB there like we do for images loaded with -bios or -pflash.
*/
if (image_low_addr > info->loader_start
|| image_high_addr < info->loader_start) {
/*
* Set image_low_addr as address limit for arm_load_dtb if it may be
* pointing into RAM, otherwise pass '0' (no limit)
*/
if (image_low_addr < info->loader_start) {
image_low_addr = 0;
}
info->dtb_start = info->loader_start;
info->dtb_limit = image_low_addr;
}
}
entry = elf_entry;
if (kernel_size < 0) {
uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
&is_linux, NULL, NULL, as);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
kernel_size = load_aarch64_image(info->kernel_filename,
info->loader_start, &entry, as);
is_linux = 1;
} else if (kernel_size < 0) {
/* 32-bit ARM */
entry = info->loader_start + KERNEL_LOAD_ADDR;
kernel_size = load_image_targphys_as(info->kernel_filename, entry,
ram_end - KERNEL_LOAD_ADDR, as);
is_linux = 1;
}
if (kernel_size < 0) {
error_report("could not load kernel '%s'", info->kernel_filename);
exit(1);
}
if (kernel_size > info->ram_size) {
error_report("kernel '%s' is too large to fit in RAM "
"(kernel size %d, RAM size %" PRId64 ")",
info->kernel_filename, kernel_size, info->ram_size);
exit(1);
}
info->entry = entry;
/*
* We want to put the initrd far enough into RAM that when the
* kernel is uncompressed it will not clobber the initrd. However
* on boards without much RAM we must ensure that we still leave
* enough room for a decent sized initrd, and on boards with large
* amounts of RAM we must avoid the initrd being so far up in RAM
* that it is outside lowmem and inaccessible to the kernel.
* So for boards with less than 256MB of RAM we put the initrd
* halfway into RAM, and for boards with 256MB of RAM or more we put
* the initrd at 128MB.
* We also refuse to put the initrd somewhere that will definitely
* overlay the kernel we just loaded, though for kernel formats which
* don't tell us their exact size (eg self-decompressing 32-bit kernels)
* we might still make a bad choice here.
*/
info->initrd_start = info->loader_start +
MAX(MIN(info->ram_size / 2, 128 * 1024 * 1024), kernel_size);
info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
if (is_linux) {
uint32_t fixupcontext[FIXUP_MAX];
if (info->initrd_filename) {
if (info->initrd_start >= ram_end) {
error_report("not enough space after kernel to load initrd");
exit(1);
}
initrd_size = load_ramdisk_as(info->initrd_filename,
info->initrd_start,
ram_end - info->initrd_start, as);
if (initrd_size < 0) {
initrd_size = load_image_targphys_as(info->initrd_filename,
info->initrd_start,
ram_end -
info->initrd_start,
as);
}
if (initrd_size < 0) {
error_report("could not load initrd '%s'",
info->initrd_filename);
exit(1);
}
if (info->initrd_start + initrd_size > ram_end) {
error_report("could not load initrd '%s': "
"too big to fit into RAM after the kernel",
info->initrd_filename);
exit(1);
}
} else {
initrd_size = 0;
}
info->initrd_size = initrd_size;
fixupcontext[FIXUP_BOARDID] = info->board_id;
fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
/*
* for device tree boot, we pass the DTB directly in r2. Otherwise
* we point to the kernel args.
*/
if (have_dtb(info)) {
hwaddr align;
if (elf_machine == EM_AARCH64) {
/*
* Some AArch64 kernels on early bootup map the fdt region as
*
* [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
*
* Let's play safe and prealign it to 2MB to give us some space.
*/
align = 2 * 1024 * 1024;
} else {
/*
* Some 32bit kernels will trash anything in the 4K page the
* initrd ends in, so make sure the DTB isn't caught up in that.
*/
align = 4096;
}
/* Place the DTB after the initrd in memory with alignment. */
info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
align);
if (info->dtb_start >= ram_end) {
error_report("Not enough space for DTB after kernel/initrd");
exit(1);
}
fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
} else {
fixupcontext[FIXUP_ARGPTR_LO] =
info->loader_start + KERNEL_ARGS_ADDR;
fixupcontext[FIXUP_ARGPTR_HI] =
(info->loader_start + KERNEL_ARGS_ADDR) >> 32;
if (info->ram_size >= (1ULL << 32)) {
error_report("RAM size must be less than 4GB to boot"
" Linux kernel using ATAGS (try passing a device tree"
" using -dtb)");
exit(1);
}
}
fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
write_bootloader("bootloader", info->loader_start,
primary_loader, fixupcontext, as);
if (info->nb_cpus > 1) {
info->write_secondary_boot(cpu, info);
}
if (info->write_board_setup) {
info->write_board_setup(cpu, info);
}
/*
* Notify devices which need to fake up firmware initialization
* that we're doing a direct kernel boot.
*/
object_child_foreach_recursive(object_get_root(),
do_arm_linux_init, info);
}
info->is_linux = is_linux;
for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
ARM_CPU(cs)->env.boot_info = info;
}
}
static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
{
/* Set up for booting firmware (which might load a kernel via fw_cfg) */
if (have_dtb(info)) {
/*
* If we have a device tree blob, but no kernel to supply it to (or
* the kernel is supposed to be loaded by the bootloader), copy the
* DTB to the base of RAM for the bootloader to pick up.
*/
info->dtb_start = info->loader_start;
}
if (info->kernel_filename) {
FWCfgState *fw_cfg;
bool try_decompressing_kernel;
fw_cfg = fw_cfg_find();
try_decompressing_kernel = arm_feature(&cpu->env,
ARM_FEATURE_AARCH64);
/*
* Expose the kernel, the command line, and the initrd in fw_cfg.
* We don't process them here at all, it's all left to the
* firmware.
*/
load_image_to_fw_cfg(fw_cfg,
FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
info->kernel_filename,
try_decompressing_kernel);
load_image_to_fw_cfg(fw_cfg,
FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
info->initrd_filename, false);
if (info->kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(info->kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
info->kernel_cmdline);
}
}
/*
* We will start from address 0 (typically a boot ROM image) in the
* same way as hardware. Leave env->boot_info NULL, so that
* do_cpu_reset() knows it does not need to alter the PC on reset.
*/
}
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
CPUState *cs;
AddressSpace *as = arm_boot_address_space(cpu, info);
/*
* CPU objects (unlike devices) are not automatically reset on system
* reset, so we must always register a handler to do so. If we're
* actually loading a kernel, the handler is also responsible for
* arranging that we start it correctly.
*/
for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
}
/*
* The board code is not supposed to set secure_board_setup unless
* running its code in secure mode is actually possible, and KVM
* doesn't support secure.
*/
assert(!(info->secure_board_setup && kvm_enabled()));
info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
info->dtb_limit = 0;
/* Load the kernel. */
if (!info->kernel_filename || info->firmware_loaded) {
arm_setup_firmware_boot(cpu, info);
} else {
arm_setup_direct_kernel_boot(cpu, info);
}
if (!info->skip_dtb_autoload && have_dtb(info)) {
if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
exit(1);
}
}
}
static const TypeInfo arm_linux_boot_if_info = {
.name = TYPE_ARM_LINUX_BOOT_IF,
.parent = TYPE_INTERFACE,
.class_size = sizeof(ARMLinuxBootIfClass),
};
static void arm_linux_boot_register_types(void)
{
type_register_static(&arm_linux_boot_if_info);
}
type_init(arm_linux_boot_register_types)
|