aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/armsse.c
blob: 97e3d5e807e062e6b6b13657a14972d82ab580ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
/*
 * Arm SSE (Subsystems for Embedded): IoTKit
 *
 * Copyright (c) 2018 Linaro Limited
 * Written by Peter Maydell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 or
 * (at your option) any later version.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/arm/armsse.h"
#include "hw/arm/arm.h"

/* Format of the System Information block SYS_CONFIG register */
typedef enum SysConfigFormat {
    IoTKitFormat,
    SSE200Format,
} SysConfigFormat;

struct ARMSSEInfo {
    const char *name;
    int sram_banks;
    int num_cpus;
    uint32_t sys_version;
    SysConfigFormat sys_config_format;
    bool has_mhus;
    bool has_ppus;
    bool has_cachectrl;
    bool has_cpusecctrl;
    bool has_cpuid;
};

static const ARMSSEInfo armsse_variants[] = {
    {
        .name = TYPE_IOTKIT,
        .sram_banks = 1,
        .num_cpus = 1,
        .sys_version = 0x41743,
        .sys_config_format = IoTKitFormat,
        .has_mhus = false,
        .has_ppus = false,
        .has_cachectrl = false,
        .has_cpusecctrl = false,
        .has_cpuid = false,
    },
    {
        .name = TYPE_SSE200,
        .sram_banks = 4,
        .num_cpus = 2,
        .sys_version = 0x22041743,
        .sys_config_format = SSE200Format,
        .has_mhus = true,
        .has_ppus = true,
        .has_cachectrl = true,
        .has_cpusecctrl = true,
        .has_cpuid = true,
    },
};

static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
{
    /* Return the SYS_CONFIG value for this SSE */
    uint32_t sys_config;

    switch (info->sys_config_format) {
    case IoTKitFormat:
        sys_config = 0;
        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
        sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
        break;
    case SSE200Format:
        sys_config = 0;
        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
        sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
        sys_config = deposit32(sys_config, 24, 4, 2);
        if (info->num_cpus > 1) {
            sys_config = deposit32(sys_config, 10, 1, 1);
            sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
            sys_config = deposit32(sys_config, 28, 4, 2);
        }
        break;
    default:
        g_assert_not_reached();
    }
    return sys_config;
}

/* Clock frequency in HZ of the 32KHz "slow clock" */
#define S32KCLK (32 * 1000)

/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
static bool irq_is_common[32] = {
    [0 ... 5] = true,
    /* 6, 7: per-CPU MHU interrupts */
    [8 ... 12] = true,
    /* 13: per-CPU icache interrupt */
    /* 14: reserved */
    [15 ... 20] = true,
    /* 21: reserved */
    [22 ... 26] = true,
    /* 27: reserved */
    /* 28, 29: per-CPU CTI interrupts */
    /* 30, 31: reserved */
};

/*
 * Create an alias region in @container of @size bytes starting at @base
 * which mirrors the memory starting at @orig.
 */
static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
                       const char *name, hwaddr base, hwaddr size, hwaddr orig)
{
    memory_region_init_alias(mr, NULL, name, container, orig, size);
    /* The alias is even lower priority than unimplemented_device regions */
    memory_region_add_subregion_overlap(container, base, mr, -1500);
}

static void irq_status_forwarder(void *opaque, int n, int level)
{
    qemu_irq destirq = opaque;

    qemu_set_irq(destirq, level);
}

static void nsccfg_handler(void *opaque, int n, int level)
{
    ARMSSE *s = ARMSSE(opaque);

    s->nsccfg = level;
}

static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
{
    /* Each of the 4 AHB and 4 APB PPCs that might be present in a
     * system using the ARMSSE has a collection of control lines which
     * are provided by the security controller and which we want to
     * expose as control lines on the ARMSSE device itself, so the
     * code using the ARMSSE can wire them up to the PPCs.
     */
    SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
    DeviceState *armssedev = DEVICE(s);
    DeviceState *dev_secctl = DEVICE(&s->secctl);
    DeviceState *dev_splitter = DEVICE(splitter);
    char *name;

    name = g_strdup_printf("%s_nonsec", ppcname);
    qdev_pass_gpios(dev_secctl, armssedev, name);
    g_free(name);
    name = g_strdup_printf("%s_ap", ppcname);
    qdev_pass_gpios(dev_secctl, armssedev, name);
    g_free(name);
    name = g_strdup_printf("%s_irq_enable", ppcname);
    qdev_pass_gpios(dev_secctl, armssedev, name);
    g_free(name);
    name = g_strdup_printf("%s_irq_clear", ppcname);
    qdev_pass_gpios(dev_secctl, armssedev, name);
    g_free(name);

    /* irq_status is a little more tricky, because we need to
     * split it so we can send it both to the security controller
     * and to our OR gate for the NVIC interrupt line.
     * Connect up the splitter's outputs, and create a GPIO input
     * which will pass the line state to the input splitter.
     */
    name = g_strdup_printf("%s_irq_status", ppcname);
    qdev_connect_gpio_out(dev_splitter, 0,
                          qdev_get_gpio_in_named(dev_secctl,
                                                 name, 0));
    qdev_connect_gpio_out(dev_splitter, 1,
                          qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
    s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
    qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
                                        s->irq_status_in[ppcnum], name, 1);
    g_free(name);
}

static void armsse_forward_sec_resp_cfg(ARMSSE *s)
{
    /* Forward the 3rd output from the splitter device as a
     * named GPIO output of the armsse object.
     */
    DeviceState *dev = DEVICE(s);
    DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);

    qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
    s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
                                           s->sec_resp_cfg, 1);
    qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
}

static void armsse_init(Object *obj)
{
    ARMSSE *s = ARMSSE(obj);
    ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
    const ARMSSEInfo *info = asc->info;
    int i;

    assert(info->sram_banks <= MAX_SRAM_BANKS);
    assert(info->num_cpus <= SSE_MAX_CPUS);

    memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);

    for (i = 0; i < info->num_cpus; i++) {
        /*
         * We put each CPU in its own cluster as they are logically
         * distinct and may be configured differently.
         */
        char *name;

        name = g_strdup_printf("cluster%d", i);
        object_initialize_child(obj, name, &s->cluster[i],
                                sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
                                &error_abort, NULL);
        qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
        g_free(name);

        name = g_strdup_printf("armv7m%d", i);
        sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
                              &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
        qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
                             ARM_CPU_TYPE_NAME("cortex-m33"));
        g_free(name);
        name = g_strdup_printf("arm-sse-cpu-container%d", i);
        memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
        g_free(name);
        if (i > 0) {
            name = g_strdup_printf("arm-sse-container-alias%d", i);
            memory_region_init_alias(&s->container_alias[i - 1], obj,
                                     name, &s->container, 0, UINT64_MAX);
            g_free(name);
        }
    }

    sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
                          TYPE_IOTKIT_SECCTL);
    sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
                          TYPE_TZ_PPC);
    sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
                          TYPE_TZ_PPC);
    for (i = 0; i < info->sram_banks; i++) {
        char *name = g_strdup_printf("mpc%d", i);
        sysbus_init_child_obj(obj, name, &s->mpc[i],
                              sizeof(s->mpc[i]), TYPE_TZ_MPC);
        g_free(name);
    }
    object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
                            sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
                            &error_abort, NULL);

    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
        char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
        SplitIRQ *splitter = &s->mpc_irq_splitter[i];

        object_initialize_child(obj, name, splitter, sizeof(*splitter),
                                TYPE_SPLIT_IRQ, &error_abort, NULL);
        g_free(name);
    }
    sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
                          TYPE_CMSDK_APB_TIMER);
    sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
                          TYPE_CMSDK_APB_TIMER);
    sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
                          TYPE_CMSDK_APB_TIMER);
    sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
                          TYPE_CMSDK_APB_DUALTIMER);
    sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
                          sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
    sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
                          sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
    sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
                          sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
    sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
                          sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
    sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
                          sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
    if (info->has_mhus) {
        sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
                              TYPE_ARMSSE_MHU);
        sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
                              TYPE_ARMSSE_MHU);
    }
    if (info->has_ppus) {
        for (i = 0; i < info->num_cpus; i++) {
            char *name = g_strdup_printf("CPU%dCORE_PPU", i);
            int ppuidx = CPU0CORE_PPU + i;

            sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
                                  sizeof(s->ppu[ppuidx]),
                                  TYPE_UNIMPLEMENTED_DEVICE);
            g_free(name);
        }
        sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
                              sizeof(s->ppu[DBG_PPU]),
                              TYPE_UNIMPLEMENTED_DEVICE);
        for (i = 0; i < info->sram_banks; i++) {
            char *name = g_strdup_printf("RAM%d_PPU", i);
            int ppuidx = RAM0_PPU + i;

            sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
                                  sizeof(s->ppu[ppuidx]),
                                  TYPE_UNIMPLEMENTED_DEVICE);
            g_free(name);
        }
    }
    if (info->has_cachectrl) {
        for (i = 0; i < info->num_cpus; i++) {
            char *name = g_strdup_printf("cachectrl%d", i);

            sysbus_init_child_obj(obj, name, &s->cachectrl[i],
                                  sizeof(s->cachectrl[i]),
                                  TYPE_UNIMPLEMENTED_DEVICE);
            g_free(name);
        }
    }
    if (info->has_cpusecctrl) {
        for (i = 0; i < info->num_cpus; i++) {
            char *name = g_strdup_printf("cpusecctrl%d", i);

            sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
                                  sizeof(s->cpusecctrl[i]),
                                  TYPE_UNIMPLEMENTED_DEVICE);
            g_free(name);
        }
    }
    if (info->has_cpuid) {
        for (i = 0; i < info->num_cpus; i++) {
            char *name = g_strdup_printf("cpuid%d", i);

            sysbus_init_child_obj(obj, name, &s->cpuid[i],
                                  sizeof(s->cpuid[i]),
                                  TYPE_ARMSSE_CPUID);
            g_free(name);
        }
    }
    object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
                            sizeof(s->nmi_orgate), TYPE_OR_IRQ,
                            &error_abort, NULL);
    object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
                            sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
                            &error_abort, NULL);
    object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
                            sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
                            &error_abort, NULL);
    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
        char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
        SplitIRQ *splitter = &s->ppc_irq_splitter[i];

        object_initialize_child(obj, name, splitter, sizeof(*splitter),
                                TYPE_SPLIT_IRQ, &error_abort, NULL);
        g_free(name);
    }
    if (info->num_cpus > 1) {
        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
            if (irq_is_common[i]) {
                char *name = g_strdup_printf("cpu-irq-splitter%d", i);
                SplitIRQ *splitter = &s->cpu_irq_splitter[i];

                object_initialize_child(obj, name, splitter, sizeof(*splitter),
                                        TYPE_SPLIT_IRQ, &error_abort, NULL);
                g_free(name);
            }
        }
    }
}

static void armsse_exp_irq(void *opaque, int n, int level)
{
    qemu_irq *irqarray = opaque;

    qemu_set_irq(irqarray[n], level);
}

static void armsse_mpcexp_status(void *opaque, int n, int level)
{
    ARMSSE *s = ARMSSE(opaque);
    qemu_set_irq(s->mpcexp_status_in[n], level);
}

static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
{
    /*
     * Return a qemu_irq which can be used to signal IRQ n to
     * all CPUs in the SSE.
     */
    ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
    const ARMSSEInfo *info = asc->info;

    assert(irq_is_common[irqno]);

    if (info->num_cpus == 1) {
        /* Only one CPU -- just connect directly to it */
        return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
    } else {
        /* Connect to the splitter which feeds all CPUs */
        return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
    }
}

static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
{
    /* Map a PPU unimplemented device stub */
    DeviceState *dev = DEVICE(&s->ppu[ppuidx]);

    qdev_prop_set_string(dev, "name", name);
    qdev_prop_set_uint64(dev, "size", 0x1000);
    qdev_init_nofail(dev);
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
}

static void armsse_realize(DeviceState *dev, Error **errp)
{
    ARMSSE *s = ARMSSE(dev);
    ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
    const ARMSSEInfo *info = asc->info;
    int i;
    MemoryRegion *mr;
    Error *err = NULL;
    SysBusDevice *sbd_apb_ppc0;
    SysBusDevice *sbd_secctl;
    DeviceState *dev_apb_ppc0;
    DeviceState *dev_apb_ppc1;
    DeviceState *dev_secctl;
    DeviceState *dev_splitter;
    uint32_t addr_width_max;

    if (!s->board_memory) {
        error_setg(errp, "memory property was not set");
        return;
    }

    if (!s->mainclk_frq) {
        error_setg(errp, "MAINCLK property was not set");
        return;
    }

    /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
    assert(is_power_of_2(info->sram_banks));
    addr_width_max = 24 - ctz32(info->sram_banks);
    if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
        error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
                   addr_width_max);
        return;
    }

    /* Handling of which devices should be available only to secure
     * code is usually done differently for M profile than for A profile.
     * Instead of putting some devices only into the secure address space,
     * devices exist in both address spaces but with hard-wired security
     * permissions that will cause the CPU to fault for non-secure accesses.
     *
     * The ARMSSE has an IDAU (Implementation Defined Access Unit),
     * which specifies hard-wired security permissions for different
     * areas of the physical address space. For the ARMSSE IDAU, the
     * top 4 bits of the physical address are the IDAU region ID, and
     * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
     * region, otherwise it is an S region.
     *
     * The various devices and RAMs are generally all mapped twice,
     * once into a region that the IDAU defines as secure and once
     * into a non-secure region. They sit behind either a Memory
     * Protection Controller (for RAM) or a Peripheral Protection
     * Controller (for devices), which allow a more fine grained
     * configuration of whether non-secure accesses are permitted.
     *
     * (The other place that guest software can configure security
     * permissions is in the architected SAU (Security Attribution
     * Unit), which is entirely inside the CPU. The IDAU can upgrade
     * the security attributes for a region to more restrictive than
     * the SAU specifies, but cannot downgrade them.)
     *
     * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
     * 0x20000000..0x2007ffff  32KB FPGA block RAM
     * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
     * 0x40000000..0x4000ffff  base peripheral region 1
     * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
     * 0x40020000..0x4002ffff  system control element peripherals
     * 0x40080000..0x400fffff  base peripheral region 2
     * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
     */

    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);

    for (i = 0; i < info->num_cpus; i++) {
        DeviceState *cpudev = DEVICE(&s->armv7m[i]);
        Object *cpuobj = OBJECT(&s->armv7m[i]);
        int j;
        char *gpioname;

        qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
        /*
         * In real hardware the initial Secure VTOR is set from the INITSVTOR0
         * register in the IoT Kit System Control Register block, and the
         * initial value of that is in turn specifiable by the FPGA that
         * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
         * and simply set the CPU's init-svtor to the IoT Kit default value.
         * In SSE-200 the situation is similar, except that the default value
         * is a reset-time signal input. Typically a board using the SSE-200
         * will have a system control processor whose boot firmware initializes
         * the INITSVTOR* registers before powering up the CPUs in any case,
         * so the hardware's default value doesn't matter. QEMU doesn't emulate
         * the control processor, so instead we behave in the way that the
         * firmware does. The initial value is configurable by the board code
         * to match whatever its firmware does.
         */
        qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
        /*
         * Start all CPUs except CPU0 powered down. In real hardware it is
         * a configurable property of the SSE-200 which CPUs start powered up
         * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
         * the boards we care about start CPU0 and leave CPU1 powered off,
         * we hard-code that for now. We can add QOM properties for this
         * later if necessary.
         */
        if (i > 0) {
            object_property_set_bool(cpuobj, true, "start-powered-off", &err);
            if (err) {
                error_propagate(errp, err);
                return;
            }
        }

        if (i > 0) {
            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
                                                &s->container_alias[i - 1], -1);
        } else {
            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
                                                &s->container, -1);
        }
        object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
                                 "memory", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_bool(cpuobj, true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        /*
         * The cluster must be realized after the armv7m container, as
         * the container's CPU object is only created on realize, and the
         * CPU must exist and have been parented into the cluster before
         * the cluster is realized.
         */
        object_property_set_bool(OBJECT(&s->cluster[i]),
                                 true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }

        /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
        s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
        for (j = 0; j < s->exp_numirq; j++) {
            s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
        }
        if (i == 0) {
            gpioname = g_strdup("EXP_IRQ");
        } else {
            gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
        }
        qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
                                            s->exp_irqs[i],
                                            gpioname, s->exp_numirq);
        g_free(gpioname);
    }

    /* Wire up the splitters that connect common IRQs to all CPUs */
    if (info->num_cpus > 1) {
        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
            if (irq_is_common[i]) {
                Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
                DeviceState *devs = DEVICE(splitter);
                int cpunum;

                object_property_set_int(splitter, info->num_cpus,
                                        "num-lines", &err);
                if (err) {
                    error_propagate(errp, err);
                    return;
                }
                object_property_set_bool(splitter, true, "realized", &err);
                if (err) {
                    error_propagate(errp, err);
                    return;
                }
                for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
                    DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);

                    qdev_connect_gpio_out(devs, cpunum,
                                          qdev_get_gpio_in(cpudev, i));
                }
            }
        }
    }

    /* Set up the big aliases first */
    make_alias(s, &s->alias1, &s->container, "alias 1",
               0x10000000, 0x10000000, 0x00000000);
    make_alias(s, &s->alias2, &s->container,
               "alias 2", 0x30000000, 0x10000000, 0x20000000);
    /* The 0x50000000..0x5fffffff region is not a pure alias: it has
     * a few extra devices that only appear there (generally the
     * control interfaces for the protection controllers).
     * We implement this by mapping those devices over the top of this
     * alias MR at a higher priority. Some of the devices in this range
     * are per-CPU, so we must put this alias in the per-cpu containers.
     */
    for (i = 0; i < info->num_cpus; i++) {
        make_alias(s, &s->alias3[i], &s->cpu_container[i],
                   "alias 3", 0x50000000, 0x10000000, 0x40000000);
    }

    /* Security controller */
    object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
    dev_secctl = DEVICE(&s->secctl);
    sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
    sysbus_mmio_map(sbd_secctl, 1, 0x40080000);

    s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
    qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);

    /* The sec_resp_cfg output from the security controller must be split into
     * multiple lines, one for each of the PPCs within the ARMSSE and one
     * that will be an output from the ARMSSE to the system.
     */
    object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
                            "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
                             "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    dev_splitter = DEVICE(&s->sec_resp_splitter);
    qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
                                qdev_get_gpio_in(dev_splitter, 0));

    /* Each SRAM bank lives behind its own Memory Protection Controller */
    for (i = 0; i < info->sram_banks; i++) {
        char *ramname = g_strdup_printf("armsse.sram%d", i);
        SysBusDevice *sbd_mpc;
        uint32_t sram_bank_size = 1 << s->sram_addr_width;

        memory_region_init_ram(&s->sram[i], NULL, ramname,
                               sram_bank_size, &err);
        g_free(ramname);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
                                 "downstream", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        /* Map the upstream end of the MPC into the right place... */
        sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
        memory_region_add_subregion(&s->container,
                                    0x20000000 + i * sram_bank_size,
                                    sysbus_mmio_get_region(sbd_mpc, 1));
        /* ...and its register interface */
        memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
                                    sysbus_mmio_get_region(sbd_mpc, 0));
    }

    /* We must OR together lines from the MPC splitters to go to the NVIC */
    object_property_set_int(OBJECT(&s->mpc_irq_orgate),
                            IOTS_NUM_EXP_MPC + info->sram_banks,
                            "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
                             "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
                          armsse_get_common_irq_in(s, 9));

    /* Devices behind APB PPC0:
     *   0x40000000: timer0
     *   0x40001000: timer1
     *   0x40002000: dual timer
     *   0x40003000: MHU0 (SSE-200 only)
     *   0x40004000: MHU1 (SSE-200 only)
     * We must configure and realize each downstream device and connect
     * it to the appropriate PPC port; then we can realize the PPC and
     * map its upstream ends to the right place in the container.
     */
    qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
                       armsse_get_common_irq_in(s, 3));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
                       armsse_get_common_irq_in(s, 4));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }


    qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
                       armsse_get_common_irq_in(s, 5));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    if (info->has_mhus) {
        /*
         * An SSE-200 with only one CPU should have only one MHU created,
         * with the region where the second MHU usually is being RAZ/WI.
         * We don't implement that SSE-200 config; if we want to support
         * it then this code needs to be enhanced to handle creating the
         * RAZ/WI region instead of the second MHU.
         */
        assert(info->num_cpus == ARRAY_SIZE(s->mhu));

        for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
            char *port;
            int cpunum;
            SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);

            object_property_set_bool(OBJECT(&s->mhu[i]), true,
                                     "realized", &err);
            if (err) {
                error_propagate(errp, err);
                return;
            }
            port = g_strdup_printf("port[%d]", i + 3);
            mr = sysbus_mmio_get_region(mhu_sbd, 0);
            object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
                                     port, &err);
            g_free(port);
            if (err) {
                error_propagate(errp, err);
                return;
            }

            /*
             * Each MHU has an irq line for each CPU:
             *  MHU 0 irq line 0 -> CPU 0 IRQ 6
             *  MHU 0 irq line 1 -> CPU 1 IRQ 6
             *  MHU 1 irq line 0 -> CPU 0 IRQ 7
             *  MHU 1 irq line 1 -> CPU 1 IRQ 7
             */
            for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
                DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);

                sysbus_connect_irq(mhu_sbd, cpunum,
                                   qdev_get_gpio_in(cpudev, 6 + i));
            }
        }
    }

    object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
    dev_apb_ppc0 = DEVICE(&s->apb_ppc0);

    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
    memory_region_add_subregion(&s->container, 0x40000000, mr);
    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
    memory_region_add_subregion(&s->container, 0x40001000, mr);
    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
    memory_region_add_subregion(&s->container, 0x40002000, mr);
    if (info->has_mhus) {
        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
        memory_region_add_subregion(&s->container, 0x40003000, mr);
        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
        memory_region_add_subregion(&s->container, 0x40004000, mr);
    }
    for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
                                    qdev_get_gpio_in_named(dev_apb_ppc0,
                                                           "cfg_nonsec", i));
        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
                                    qdev_get_gpio_in_named(dev_apb_ppc0,
                                                           "cfg_ap", i));
    }
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc0,
                                                       "irq_enable", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc0,
                                                       "irq_clear", 0));
    qdev_connect_gpio_out(dev_splitter, 0,
                          qdev_get_gpio_in_named(dev_apb_ppc0,
                                                 "cfg_sec_resp", 0));

    /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
     * ones) are sent individually to the security controller, and also
     * ORed together to give a single combined PPC interrupt to the NVIC.
     */
    object_property_set_int(OBJECT(&s->ppc_irq_orgate),
                            NUM_PPCS, "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
                             "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
                          armsse_get_common_irq_in(s, 10));

    /*
     * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
     * private per-CPU region (all these devices are SSE-200 only):
     *  0x50010000: L1 icache control registers
     *  0x50011000: CPUSECCTRL (CPU local security control registers)
     *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
     */
    if (info->has_cachectrl) {
        for (i = 0; i < info->num_cpus; i++) {
            char *name = g_strdup_printf("cachectrl%d", i);
            MemoryRegion *mr;

            qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
            g_free(name);
            qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
            object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
                                     "realized", &err);
            if (err) {
                error_propagate(errp, err);
                return;
            }

            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
            memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
        }
    }
    if (info->has_cpusecctrl) {
        for (i = 0; i < info->num_cpus; i++) {
            char *name = g_strdup_printf("CPUSECCTRL%d", i);
            MemoryRegion *mr;

            qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
            g_free(name);
            qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
            object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
                                     "realized", &err);
            if (err) {
                error_propagate(errp, err);
                return;
            }

            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
            memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
        }
    }
    if (info->has_cpuid) {
        for (i = 0; i < info->num_cpus; i++) {
            MemoryRegion *mr;

            qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
            object_property_set_bool(OBJECT(&s->cpuid[i]), true,
                                     "realized", &err);
            if (err) {
                error_propagate(errp, err);
                return;
            }

            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
            memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
        }
    }

    /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
    /* Devices behind APB PPC1:
     *   0x4002f000: S32K timer
     */
    qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
    object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
                       armsse_get_common_irq_in(s, 2));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
    object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
    memory_region_add_subregion(&s->container, 0x4002f000, mr);

    dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "cfg_nonsec", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "cfg_ap", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "irq_enable", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "irq_clear", 0));
    qdev_connect_gpio_out(dev_splitter, 1,
                          qdev_get_gpio_in_named(dev_apb_ppc1,
                                                 "cfg_sec_resp", 0));

    object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
                            "SYS_VERSION", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_int(OBJECT(&s->sysinfo),
                            armsse_sys_config_value(s, info),
                            "SYS_CONFIG", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    /* System information registers */
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
    /* System control registers */
    object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);

    if (info->has_ppus) {
        /* CPUnCORE_PPU for each CPU */
        for (i = 0; i < info->num_cpus; i++) {
            char *name = g_strdup_printf("CPU%dCORE_PPU", i);

            map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
            /*
             * We don't support CPU debug so don't create the
             * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
             */
            g_free(name);
        }
        map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);

        for (i = 0; i < info->sram_banks; i++) {
            char *name = g_strdup_printf("RAM%d_PPU", i);

            map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
            g_free(name);
        }
    }

    /* This OR gate wires together outputs from the secure watchdogs to NMI */
    object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
                          qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));

    qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
    object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);

    /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */

    qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
                       armsse_get_common_irq_in(s, 1));
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);

    qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);

    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
        Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);

        object_property_set_int(splitter, 2, "num-lines", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_bool(splitter, true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
    }

    for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
        char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);

        armsse_forward_ppc(s, ppcname, i);
        g_free(ppcname);
    }

    for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
        char *ppcname = g_strdup_printf("apb_ppcexp%d", i);

        armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
        g_free(ppcname);
    }

    for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
        /* Wire up IRQ splitter for internal PPCs */
        DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
        char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
                                         i - NUM_EXTERNAL_PPCS);
        TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;

        qdev_connect_gpio_out(devs, 0,
                              qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
        qdev_connect_gpio_out(devs, 1,
                              qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
        qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
                                    qdev_get_gpio_in(devs, 0));
        g_free(gpioname);
    }

    /* Wire up the splitters for the MPC IRQs */
    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
        DeviceState *dev_splitter = DEVICE(splitter);

        object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_bool(OBJECT(splitter), true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }

        if (i < IOTS_NUM_EXP_MPC) {
            /* Splitter input is from GPIO input line */
            s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
            qdev_connect_gpio_out(dev_splitter, 0,
                                  qdev_get_gpio_in_named(dev_secctl,
                                                         "mpcexp_status", i));
        } else {
            /* Splitter input is from our own MPC */
            qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
                                        "irq", 0,
                                        qdev_get_gpio_in(dev_splitter, 0));
            qdev_connect_gpio_out(dev_splitter, 0,
                                  qdev_get_gpio_in_named(dev_secctl,
                                                         "mpc_status", 0));
        }

        qdev_connect_gpio_out(dev_splitter, 1,
                              qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
    }
    /* Create GPIO inputs which will pass the line state for our
     * mpcexp_irq inputs to the correct splitter devices.
     */
    qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
                            IOTS_NUM_EXP_MPC);

    armsse_forward_sec_resp_cfg(s);

    /* Forward the MSC related signals */
    qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
    qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
    qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
    qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
                                armsse_get_common_irq_in(s, 11));

    /*
     * Expose our container region to the board model; this corresponds
     * to the AHB Slave Expansion ports which allow bus master devices
     * (eg DMA controllers) in the board model to make transactions into
     * devices in the ARMSSE.
     */
    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);

    system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
}

static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
                              int *iregion, bool *exempt, bool *ns, bool *nsc)
{
    /*
     * For ARMSSE systems the IDAU responses are simple logical functions
     * of the address bits. The NSC attribute is guest-adjustable via the
     * NSCCFG register in the security controller.
     */
    ARMSSE *s = ARMSSE(ii);
    int region = extract32(address, 28, 4);

    *ns = !(region & 1);
    *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
    *exempt = (address & 0xeff00000) == 0xe0000000;
    *iregion = region;
}

static const VMStateDescription armsse_vmstate = {
    .name = "iotkit",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(nsccfg, ARMSSE),
        VMSTATE_END_OF_LIST()
    }
};

static Property armsse_properties[] = {
    DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
    DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
    DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
    DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
    DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
    DEFINE_PROP_END_OF_LIST()
};

static void armsse_reset(DeviceState *dev)
{
    ARMSSE *s = ARMSSE(dev);

    s->nsccfg = 0;
}

static void armsse_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
    ARMSSEClass *asc = ARMSSE_CLASS(klass);

    dc->realize = armsse_realize;
    dc->vmsd = &armsse_vmstate;
    dc->props = armsse_properties;
    dc->reset = armsse_reset;
    iic->check = armsse_idau_check;
    asc->info = data;
}

static const TypeInfo armsse_info = {
    .name = TYPE_ARMSSE,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(ARMSSE),
    .instance_init = armsse_init,
    .abstract = true,
    .interfaces = (InterfaceInfo[]) {
        { TYPE_IDAU_INTERFACE },
        { }
    }
};

static void armsse_register_types(void)
{
    int i;

    type_register_static(&armsse_info);

    for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
        TypeInfo ti = {
            .name = armsse_variants[i].name,
            .parent = TYPE_ARMSSE,
            .class_init = armsse_class_init,
            .class_data = (void *)&armsse_variants[i],
        };
        type_register(&ti);
    }
}

type_init(armsse_register_types);