1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
|
/*
* QEMU float support
*
* The code in this source file is derived from release 2a of the SoftFloat
* IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
* some later contributions) are provided under that license, as detailed below.
* It has subsequently been modified by contributors to the QEMU Project,
* so some portions are provided under:
* the SoftFloat-2a license
* the BSD license
* GPL-v2-or-later
*
* Any future contributions to this file after December 1st 2014 will be
* taken to be licensed under the Softfloat-2a license unless specifically
* indicated otherwise.
*/
static void partsN(return_nan)(FloatPartsN *a, float_status *s)
{
switch (a->cls) {
case float_class_snan:
float_raise(float_flag_invalid, s);
if (s->default_nan_mode) {
parts_default_nan(a, s);
} else {
parts_silence_nan(a, s);
}
break;
case float_class_qnan:
if (s->default_nan_mode) {
parts_default_nan(a, s);
}
break;
default:
g_assert_not_reached();
}
}
static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b,
float_status *s)
{
if (is_snan(a->cls) || is_snan(b->cls)) {
float_raise(float_flag_invalid, s);
}
if (s->default_nan_mode) {
parts_default_nan(a, s);
} else {
int cmp = frac_cmp(a, b);
if (cmp == 0) {
cmp = a->sign < b->sign;
}
if (pickNaN(a->cls, b->cls, cmp > 0, s)) {
a = b;
}
if (is_snan(a->cls)) {
parts_silence_nan(a, s);
}
}
return a;
}
static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b,
FloatPartsN *c, float_status *s,
int ab_mask, int abc_mask)
{
int which;
if (unlikely(abc_mask & float_cmask_snan)) {
float_raise(float_flag_invalid, s);
}
which = pickNaNMulAdd(a->cls, b->cls, c->cls,
ab_mask == float_cmask_infzero, s);
if (s->default_nan_mode || which == 3) {
/*
* Note that this check is after pickNaNMulAdd so that function
* has an opportunity to set the Invalid flag for infzero.
*/
parts_default_nan(a, s);
return a;
}
switch (which) {
case 0:
break;
case 1:
a = b;
break;
case 2:
a = c;
break;
default:
g_assert_not_reached();
}
if (is_snan(a->cls)) {
parts_silence_nan(a, s);
}
return a;
}
/*
* Canonicalize the FloatParts structure. Determine the class,
* unbias the exponent, and normalize the fraction.
*/
static void partsN(canonicalize)(FloatPartsN *p, float_status *status,
const FloatFmt *fmt)
{
if (unlikely(p->exp == 0)) {
if (likely(frac_eqz(p))) {
p->cls = float_class_zero;
} else if (status->flush_inputs_to_zero) {
float_raise(float_flag_input_denormal, status);
p->cls = float_class_zero;
frac_clear(p);
} else {
int shift = frac_normalize(p);
p->cls = float_class_normal;
p->exp = fmt->frac_shift - fmt->exp_bias - shift + 1;
}
} else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) {
p->cls = float_class_normal;
p->exp -= fmt->exp_bias;
frac_shl(p, fmt->frac_shift);
p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
} else if (likely(frac_eqz(p))) {
p->cls = float_class_inf;
} else {
frac_shl(p, fmt->frac_shift);
p->cls = (parts_is_snan_frac(p->frac_hi, status)
? float_class_snan : float_class_qnan);
}
}
/*
* Round and uncanonicalize a floating-point number by parts. There
* are FRAC_SHIFT bits that may require rounding at the bottom of the
* fraction; these bits will be removed. The exponent will be biased
* by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
*/
static void partsN(uncanon)(FloatPartsN *p, float_status *s,
const FloatFmt *fmt)
{
const int exp_max = fmt->exp_max;
const int frac_shift = fmt->frac_shift;
const uint64_t frac_lsb = fmt->frac_lsb;
const uint64_t frac_lsbm1 = fmt->frac_lsbm1;
const uint64_t round_mask = fmt->round_mask;
const uint64_t roundeven_mask = fmt->roundeven_mask;
uint64_t inc;
bool overflow_norm;
int exp, flags = 0;
if (unlikely(p->cls != float_class_normal)) {
switch (p->cls) {
case float_class_zero:
p->exp = 0;
frac_clear(p);
return;
case float_class_inf:
g_assert(!fmt->arm_althp);
p->exp = fmt->exp_max;
frac_clear(p);
return;
case float_class_qnan:
case float_class_snan:
g_assert(!fmt->arm_althp);
p->exp = fmt->exp_max;
frac_shr(p, fmt->frac_shift);
return;
default:
break;
}
g_assert_not_reached();
}
switch (s->float_rounding_mode) {
case float_round_nearest_even:
overflow_norm = false;
inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
break;
case float_round_ties_away:
overflow_norm = false;
inc = frac_lsbm1;
break;
case float_round_to_zero:
overflow_norm = true;
inc = 0;
break;
case float_round_up:
inc = p->sign ? 0 : round_mask;
overflow_norm = p->sign;
break;
case float_round_down:
inc = p->sign ? round_mask : 0;
overflow_norm = !p->sign;
break;
case float_round_to_odd:
overflow_norm = true;
inc = p->frac_lo & frac_lsb ? 0 : round_mask;
break;
default:
g_assert_not_reached();
}
exp = p->exp + fmt->exp_bias;
if (likely(exp > 0)) {
if (p->frac_lo & round_mask) {
flags |= float_flag_inexact;
if (frac_addi(p, p, inc)) {
frac_shr(p, 1);
p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
exp++;
}
}
frac_shr(p, frac_shift);
if (fmt->arm_althp) {
/* ARM Alt HP eschews Inf and NaN for a wider exponent. */
if (unlikely(exp > exp_max)) {
/* Overflow. Return the maximum normal. */
flags = float_flag_invalid;
exp = exp_max;
frac_allones(p);
}
} else if (unlikely(exp >= exp_max)) {
flags |= float_flag_overflow | float_flag_inexact;
if (overflow_norm) {
exp = exp_max - 1;
frac_allones(p);
} else {
p->cls = float_class_inf;
exp = exp_max;
frac_clear(p);
}
}
} else if (s->flush_to_zero) {
flags |= float_flag_output_denormal;
p->cls = float_class_zero;
exp = 0;
frac_clear(p);
} else {
bool is_tiny = s->tininess_before_rounding || exp < 0;
if (!is_tiny) {
FloatPartsN discard;
is_tiny = !frac_addi(&discard, p, inc);
}
frac_shrjam(p, 1 - exp);
if (p->frac_lo & round_mask) {
/* Need to recompute round-to-even/round-to-odd. */
switch (s->float_rounding_mode) {
case float_round_nearest_even:
inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
? frac_lsbm1 : 0);
break;
case float_round_to_odd:
inc = p->frac_lo & frac_lsb ? 0 : round_mask;
break;
default:
break;
}
flags |= float_flag_inexact;
frac_addi(p, p, inc);
}
exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) != 0;
frac_shr(p, frac_shift);
if (is_tiny && (flags & float_flag_inexact)) {
flags |= float_flag_underflow;
}
if (exp == 0 && frac_eqz(p)) {
p->cls = float_class_zero;
}
}
p->exp = exp;
float_raise(flags, s);
}
/*
* Returns the result of adding or subtracting the values of the
* floating-point values `a' and `b'. The operation is performed
* according to the IEC/IEEE Standard for Binary Floating-Point
* Arithmetic.
*/
static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b,
float_status *s, bool subtract)
{
bool b_sign = b->sign ^ subtract;
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
if (a->sign != b_sign) {
/* Subtraction */
if (likely(ab_mask == float_cmask_normal)) {
if (parts_sub_normal(a, b)) {
return a;
}
/* Subtract was exact, fall through to set sign. */
ab_mask = float_cmask_zero;
}
if (ab_mask == float_cmask_zero) {
a->sign = s->float_rounding_mode == float_round_down;
return a;
}
if (unlikely(ab_mask & float_cmask_anynan)) {
goto p_nan;
}
if (ab_mask & float_cmask_inf) {
if (a->cls != float_class_inf) {
/* N - Inf */
goto return_b;
}
if (b->cls != float_class_inf) {
/* Inf - N */
return a;
}
/* Inf - Inf */
float_raise(float_flag_invalid, s);
parts_default_nan(a, s);
return a;
}
} else {
/* Addition */
if (likely(ab_mask == float_cmask_normal)) {
parts_add_normal(a, b);
return a;
}
if (ab_mask == float_cmask_zero) {
return a;
}
if (unlikely(ab_mask & float_cmask_anynan)) {
goto p_nan;
}
if (ab_mask & float_cmask_inf) {
a->cls = float_class_inf;
return a;
}
}
if (b->cls == float_class_zero) {
g_assert(a->cls == float_class_normal);
return a;
}
g_assert(a->cls == float_class_zero);
g_assert(b->cls == float_class_normal);
return_b:
b->sign = b_sign;
return b;
p_nan:
return parts_pick_nan(a, b, s);
}
/*
* Returns the result of multiplying the floating-point values `a' and
* `b'. The operation is performed according to the IEC/IEEE Standard
* for Binary Floating-Point Arithmetic.
*/
static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b,
float_status *s)
{
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
bool sign = a->sign ^ b->sign;
if (likely(ab_mask == float_cmask_normal)) {
FloatPartsW tmp;
frac_mulw(&tmp, a, b);
frac_truncjam(a, &tmp);
a->exp += b->exp + 1;
if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
frac_add(a, a, a);
a->exp -= 1;
}
a->sign = sign;
return a;
}
/* Inf * Zero == NaN */
if (unlikely(ab_mask == float_cmask_infzero)) {
float_raise(float_flag_invalid, s);
parts_default_nan(a, s);
return a;
}
if (unlikely(ab_mask & float_cmask_anynan)) {
return parts_pick_nan(a, b, s);
}
/* Multiply by 0 or Inf */
if (ab_mask & float_cmask_inf) {
a->cls = float_class_inf;
a->sign = sign;
return a;
}
g_assert(ab_mask & float_cmask_zero);
a->cls = float_class_zero;
a->sign = sign;
return a;
}
/*
* Returns the result of multiplying the floating-point values `a' and
* `b' then adding 'c', with no intermediate rounding step after the
* multiplication. The operation is performed according to the
* IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
* The flags argument allows the caller to select negation of the
* addend, the intermediate product, or the final result. (The
* difference between this and having the caller do a separate
* negation is that negating externally will flip the sign bit on NaNs.)
*
* Requires A and C extracted into a double-sized structure to provide the
* extra space for the widening multiply.
*/
static FloatPartsN *partsN(muladd)(FloatPartsN *a, FloatPartsN *b,
FloatPartsN *c, int flags, float_status *s)
{
int ab_mask, abc_mask;
FloatPartsW p_widen, c_widen;
ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
abc_mask = float_cmask(c->cls) | ab_mask;
/*
* It is implementation-defined whether the cases of (0,inf,qnan)
* and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
* they return if they do), so we have to hand this information
* off to the target-specific pick-a-NaN routine.
*/
if (unlikely(abc_mask & float_cmask_anynan)) {
return parts_pick_nan_muladd(a, b, c, s, ab_mask, abc_mask);
}
if (flags & float_muladd_negate_c) {
c->sign ^= 1;
}
/* Compute the sign of the product into A. */
a->sign ^= b->sign;
if (flags & float_muladd_negate_product) {
a->sign ^= 1;
}
if (unlikely(ab_mask != float_cmask_normal)) {
if (unlikely(ab_mask == float_cmask_infzero)) {
goto d_nan;
}
if (ab_mask & float_cmask_inf) {
if (c->cls == float_class_inf && a->sign != c->sign) {
goto d_nan;
}
goto return_inf;
}
g_assert(ab_mask & float_cmask_zero);
if (c->cls == float_class_normal) {
*a = *c;
goto return_normal;
}
if (c->cls == float_class_zero) {
if (a->sign != c->sign) {
goto return_sub_zero;
}
goto return_zero;
}
g_assert(c->cls == float_class_inf);
}
if (unlikely(c->cls == float_class_inf)) {
a->sign = c->sign;
goto return_inf;
}
/* Perform the multiplication step. */
p_widen.sign = a->sign;
p_widen.exp = a->exp + b->exp + 1;
frac_mulw(&p_widen, a, b);
if (!(p_widen.frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
frac_add(&p_widen, &p_widen, &p_widen);
p_widen.exp -= 1;
}
/* Perform the addition step. */
if (c->cls != float_class_zero) {
/* Zero-extend C to less significant bits. */
frac_widen(&c_widen, c);
c_widen.exp = c->exp;
if (a->sign == c->sign) {
parts_add_normal(&p_widen, &c_widen);
} else if (!parts_sub_normal(&p_widen, &c_widen)) {
goto return_sub_zero;
}
}
/* Narrow with sticky bit, for proper rounding later. */
frac_truncjam(a, &p_widen);
a->sign = p_widen.sign;
a->exp = p_widen.exp;
return_normal:
if (flags & float_muladd_halve_result) {
a->exp -= 1;
}
finish_sign:
if (flags & float_muladd_negate_result) {
a->sign ^= 1;
}
return a;
return_sub_zero:
a->sign = s->float_rounding_mode == float_round_down;
return_zero:
a->cls = float_class_zero;
goto finish_sign;
return_inf:
a->cls = float_class_inf;
goto finish_sign;
d_nan:
float_raise(float_flag_invalid, s);
parts_default_nan(a, s);
return a;
}
/*
* Returns the result of dividing the floating-point value `a' by the
* corresponding value `b'. The operation is performed according to
* the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*/
static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b,
float_status *s)
{
int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
bool sign = a->sign ^ b->sign;
if (likely(ab_mask == float_cmask_normal)) {
a->sign = sign;
a->exp -= b->exp + frac_div(a, b);
return a;
}
/* 0/0 or Inf/Inf => NaN */
if (unlikely(ab_mask == float_cmask_zero) ||
unlikely(ab_mask == float_cmask_inf)) {
float_raise(float_flag_invalid, s);
parts_default_nan(a, s);
return a;
}
/* All the NaN cases */
if (unlikely(ab_mask & float_cmask_anynan)) {
return parts_pick_nan(a, b, s);
}
a->sign = sign;
/* Inf / X */
if (a->cls == float_class_inf) {
return a;
}
/* 0 / X */
if (a->cls == float_class_zero) {
return a;
}
/* X / Inf */
if (b->cls == float_class_inf) {
a->cls = float_class_zero;
return a;
}
/* X / 0 => Inf */
g_assert(b->cls == float_class_zero);
float_raise(float_flag_divbyzero, s);
a->cls = float_class_inf;
return a;
}
/*
* Rounds the floating-point value `a' to an integer, and returns the
* result as a floating-point value. The operation is performed
* according to the IEC/IEEE Standard for Binary Floating-Point
* Arithmetic.
*
* parts_round_to_int_normal is an internal helper function for
* normal numbers only, returning true for inexact but not directly
* raising float_flag_inexact.
*/
static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode,
int scale, int frac_size)
{
uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc;
int shift_adj;
scale = MIN(MAX(scale, -0x10000), 0x10000);
a->exp += scale;
if (a->exp < 0) {
bool one;
/* All fractional */
switch (rmode) {
case float_round_nearest_even:
one = false;
if (a->exp == -1) {
FloatPartsN tmp;
/* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */
frac_add(&tmp, a, a);
/* Anything remaining means frac > 0.5. */
one = !frac_eqz(&tmp);
}
break;
case float_round_ties_away:
one = a->exp == -1;
break;
case float_round_to_zero:
one = false;
break;
case float_round_up:
one = !a->sign;
break;
case float_round_down:
one = a->sign;
break;
case float_round_to_odd:
one = true;
break;
default:
g_assert_not_reached();
}
frac_clear(a);
a->exp = 0;
if (one) {
a->frac_hi = DECOMPOSED_IMPLICIT_BIT;
} else {
a->cls = float_class_zero;
}
return true;
}
if (a->exp >= frac_size) {
/* All integral */
return false;
}
if (N > 64 && a->exp < N - 64) {
/*
* Rounding is not in the low word -- shift lsb to bit 2,
* which leaves room for sticky and rounding bit.
*/
shift_adj = (N - 1) - (a->exp + 2);
frac_shrjam(a, shift_adj);
frac_lsb = 1 << 2;
} else {
shift_adj = 0;
frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63);
}
frac_lsbm1 = frac_lsb >> 1;
rnd_mask = frac_lsb - 1;
rnd_even_mask = rnd_mask | frac_lsb;
if (!(a->frac_lo & rnd_mask)) {
/* Fractional bits already clear, undo the shift above. */
frac_shl(a, shift_adj);
return false;
}
switch (rmode) {
case float_round_nearest_even:
inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
break;
case float_round_ties_away:
inc = frac_lsbm1;
break;
case float_round_to_zero:
inc = 0;
break;
case float_round_up:
inc = a->sign ? 0 : rnd_mask;
break;
case float_round_down:
inc = a->sign ? rnd_mask : 0;
break;
case float_round_to_odd:
inc = a->frac_lo & frac_lsb ? 0 : rnd_mask;
break;
default:
g_assert_not_reached();
}
if (shift_adj == 0) {
if (frac_addi(a, a, inc)) {
frac_shr(a, 1);
a->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
a->exp++;
}
a->frac_lo &= ~rnd_mask;
} else {
frac_addi(a, a, inc);
a->frac_lo &= ~rnd_mask;
/* Be careful shifting back, not to overflow */
frac_shl(a, shift_adj - 1);
if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) {
a->exp++;
} else {
frac_add(a, a, a);
}
}
return true;
}
static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode,
int scale, float_status *s,
const FloatFmt *fmt)
{
switch (a->cls) {
case float_class_qnan:
case float_class_snan:
parts_return_nan(a, s);
break;
case float_class_zero:
case float_class_inf:
break;
case float_class_normal:
if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) {
float_raise(float_flag_inexact, s);
}
break;
default:
g_assert_not_reached();
}
}
|