aboutsummaryrefslogtreecommitdiff
path: root/fpu/softfloat-native.h
blob: a28c76947236b4f8758731441339e2ca215e328f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/* Native implementation of soft float functions */
#include <math.h>

#if (defined(HOST_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
#include <ieeefp.h>
#define fabsf(f) ((float)fabs(f))
#else
#include <fenv.h>
#endif

#if defined(__OpenBSD__) || defined(__NetBSD__)
#include <sys/param.h>
#endif

/*
 * Define some C99-7.12.3 classification macros and
 *        some C99-.12.4 for Solaris systems OS less than 10,
 *        or Solaris 10 systems running GCC 3.x or less.
 *   Solaris 10 with GCC4 does not need these macros as they
 *   are defined in <iso/math_c99.h> with a compiler directive
 */
#if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) \
                                                        && (__GNUC__ < 4))) \
    || (defined(__OpenBSD__) && (OpenBSD < 200811))
/*
 * C99 7.12.3 classification macros
 * and
 * C99 7.12.14 comparison macros
 *
 * ... do not work on Solaris 10 using GNU CC 3.4.x.
 * Try to workaround the missing / broken C99 math macros.
 */
#if defined(__OpenBSD__)
#define unordered(x, y) (isnan(x) || isnan(y))
#endif

#ifdef __NetBSD__
#ifndef isgreater
#define isgreater(x, y)		__builtin_isgreater(x, y)
#endif
#ifndef isgreaterequal
#define isgreaterequal(x, y)	__builtin_isgreaterequal(x, y)
#endif
#ifndef isless
#define isless(x, y)		__builtin_isless(x, y)
#endif
#ifndef islessequal
#define islessequal(x, y)	__builtin_islessequal(x, y)
#endif
#ifndef isunordered
#define isunordered(x, y)	__builtin_isunordered(x, y)
#endif
#endif


#define isnormal(x)             (fpclass(x) >= FP_NZERO)
#define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
#define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
#define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
#define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
#define isunordered(x,y)        unordered(x, y)
#endif

#if defined(__sun__) && !defined(NEED_LIBSUNMATH)

#ifndef isnan
# define isnan(x) \
    (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
     : sizeof (x) == sizeof (double) ? isnan_d (x) \
     : isnan_f (x))
static inline int isnan_f  (float       x) { return x != x; }
static inline int isnan_d  (double      x) { return x != x; }
static inline int isnan_ld (long double x) { return x != x; }
#endif

#ifndef isinf
# define isinf(x) \
    (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
     : sizeof (x) == sizeof (double) ? isinf_d (x) \
     : isinf_f (x))
static inline int isinf_f  (float       x) { return isnan (x - x); }
static inline int isinf_d  (double      x) { return isnan (x - x); }
static inline int isinf_ld (long double x) { return isnan (x - x); }
#endif
#endif

typedef float float32;
typedef double float64;
#ifdef FLOATX80
typedef long double floatx80;
#endif

typedef union {
    float32 f;
    uint32_t i;
} float32u;
typedef union {
    float64 f;
    uint64_t i;
} float64u;
#ifdef FLOATX80
typedef union {
    floatx80 f;
    struct {
        uint64_t low;
        uint16_t high;
    } i;
} floatx80u;
#endif

/*----------------------------------------------------------------------------
| Software IEC/IEEE floating-point rounding mode.
*----------------------------------------------------------------------------*/
#if (defined(HOST_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
#if defined(__OpenBSD__)
#define FE_RM FP_RM
#define FE_RP FP_RP
#define FE_RZ FP_RZ
#endif
enum {
    float_round_nearest_even = FP_RN,
    float_round_down         = FP_RM,
    float_round_up           = FP_RP,
    float_round_to_zero      = FP_RZ
};
#elif defined(__arm__)
enum {
    float_round_nearest_even = 0,
    float_round_down         = 1,
    float_round_up           = 2,
    float_round_to_zero      = 3
};
#else
enum {
    float_round_nearest_even = FE_TONEAREST,
    float_round_down         = FE_DOWNWARD,
    float_round_up           = FE_UPWARD,
    float_round_to_zero      = FE_TOWARDZERO
};
#endif

typedef struct float_status {
    int float_rounding_mode;
#ifdef FLOATX80
    int floatx80_rounding_precision;
#endif
} float_status;

void set_float_rounding_mode(int val STATUS_PARAM);
#ifdef FLOATX80
void set_floatx80_rounding_precision(int val STATUS_PARAM);
#endif

/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32( int STATUS_PARAM);
float32 uint32_to_float32( unsigned int STATUS_PARAM);
float64 int32_to_float64( int STATUS_PARAM);
float64 uint32_to_float64( unsigned int STATUS_PARAM);
#ifdef FLOATX80
floatx80 int32_to_floatx80( int STATUS_PARAM);
#endif
#ifdef FLOAT128
float128 int32_to_float128( int STATUS_PARAM);
#endif
float32 int64_to_float32( int64_t STATUS_PARAM);
float32 uint64_to_float32( uint64_t STATUS_PARAM);
float64 int64_to_float64( int64_t STATUS_PARAM);
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
#ifdef FLOATX80
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
#endif
#ifdef FLOAT128
float128 int64_to_float128( int64_t STATUS_PARAM);
#endif

/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int float32_to_int32( float32  STATUS_PARAM);
int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
int64_t float32_to_int64( float32  STATUS_PARAM);
int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
float64 float32_to_float64( float32  STATUS_PARAM);
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32  STATUS_PARAM);
#endif
#ifdef FLOAT128
float128 float32_to_float128( float32  STATUS_PARAM);
#endif

/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int( float32  STATUS_PARAM);
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
{
    return a + b;
}
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
{
    return a - b;
}
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
{
    return a * b;
}
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
{
    return a / b;
}
float32 float32_rem( float32, float32  STATUS_PARAM);
float32 float32_sqrt( float32  STATUS_PARAM);
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
{
    return a == b;
}
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
{
    return a <= b;
}
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
{
    return a < b;
}
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
{
    return a <= b && a >= b;
}
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
{
    return islessequal(a, b);
}
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
{
    return isless(a, b);
}
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
{
    return isunordered(a, b);

}
int float32_compare( float32, float32 STATUS_PARAM );
int float32_compare_quiet( float32, float32 STATUS_PARAM );
int float32_is_signaling_nan( float32 );
int float32_is_nan( float32 );

INLINE float32 float32_abs(float32 a)
{
    return fabsf(a);
}

INLINE float32 float32_chs(float32 a)
{
    return -a;
}

INLINE float32 float32_is_infinity(float32 a)
{
    return fpclassify(a) == FP_INFINITE;
}

INLINE float32 float32_is_neg(float32 a)
{
    float32u u;
    u.f = a;
    return u.i >> 31;
}

INLINE float32 float32_is_zero(float32 a)
{
    return fpclassify(a) == FP_ZERO;
}

INLINE float32 float32_scalbn(float32 a, int n)
{
    return scalbnf(a, n);
}

/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int float64_to_int32( float64 STATUS_PARAM );
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
unsigned int float64_to_uint32( float64 STATUS_PARAM );
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
int64_t float64_to_int64( float64 STATUS_PARAM );
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
uint64_t float64_to_uint64( float64 STATUS_PARAM );
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
float32 float64_to_float32( float64 STATUS_PARAM );
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 STATUS_PARAM );
#endif

/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
float64 float64_round_to_int( float64 STATUS_PARAM );
float64 float64_trunc_to_int( float64 STATUS_PARAM );
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
{
    return a + b;
}
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
{
    return a - b;
}
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
{
    return a * b;
}
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
{
    return a / b;
}
float64 float64_rem( float64, float64 STATUS_PARAM );
float64 float64_sqrt( float64 STATUS_PARAM );
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
{
    return a == b;
}
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
{
    return a <= b;
}
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
{
    return a < b;
}
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
{
    return a <= b && a >= b;
}
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
{
    return islessequal(a, b);
}
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
{
    return isless(a, b);

}
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
{
    return isunordered(a, b);

}
int float64_compare( float64, float64 STATUS_PARAM );
int float64_compare_quiet( float64, float64 STATUS_PARAM );
int float64_is_signaling_nan( float64 );
int float64_is_nan( float64 );

INLINE float64 float64_abs(float64 a)
{
    return fabs(a);
}

INLINE float64 float64_chs(float64 a)
{
    return -a;
}

INLINE float64 float64_is_infinity(float64 a)
{
    return fpclassify(a) == FP_INFINITE;
}

INLINE float64 float64_is_neg(float64 a)
{
    float64u u;
    u.f = a;
    return u.i >> 63;
}

INLINE float64 float64_is_zero(float64 a)
{
    return fpclassify(a) == FP_ZERO;
}

INLINE float64 float64_scalbn(float64 a, int n)
{
    return scalbn(a, n);
}

#ifdef FLOATX80

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int floatx80_to_int32( floatx80 STATUS_PARAM );
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
#ifdef FLOAT128
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
#endif

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a + b;
}
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a - b;
}
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a * b;
}
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a / b;
}
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a == b;
}
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a <= b;
}
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a < b;
}
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
{
    return a <= b && a >= b;
}
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
{
    return islessequal(a, b);
}
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
{
    return isless(a, b);

}
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
{
    return isunordered(a, b);

}
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
int floatx80_is_signaling_nan( floatx80 );
int floatx80_is_nan( floatx80 );

INLINE floatx80 floatx80_abs(floatx80 a)
{
    return fabsl(a);
}

INLINE floatx80 floatx80_chs(floatx80 a)
{
    return -a;
}

INLINE floatx80 floatx80_is_infinity(floatx80 a)
{
    return fpclassify(a) == FP_INFINITE;
}

INLINE floatx80 floatx80_is_neg(floatx80 a)
{
    floatx80u u;
    u.f = a;
    return u.i.high >> 15;
}

INLINE floatx80 floatx80_is_zero(floatx80 a)
{
    return fpclassify(a) == FP_ZERO;
}

INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
{
    return scalbnl(a, n);
}

#endif