1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
/* Native implementation of soft float functions. Only a single status
context is supported */
#include "softfloat.h"
#include <math.h>
void set_float_rounding_mode(int val STATUS_PARAM)
{
STATUS(float_rounding_mode) = val;
#if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
fpsetround(val);
#elif defined(__arm__)
/* nothing to do */
#else
fesetround(val);
#endif
}
#ifdef FLOATX80
void set_floatx80_rounding_precision(int val STATUS_PARAM)
{
STATUS(floatx80_rounding_precision) = val;
}
#endif
#if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
#define lrint(d) ((int32_t)rint(d))
#define llrint(d) ((int64_t)rint(d))
#define lrintf(f) ((int32_t)rint(f))
#define llrintf(f) ((int64_t)rint(f))
#define sqrtf(f) ((float)sqrt(f))
#define remainderf(fa, fb) ((float)remainder(fa, fb))
#define rintf(f) ((float)rint(f))
#endif
#if defined(__powerpc__)
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
double qemu_rint(double x)
{
double y = 4503599627370496.0;
if (fabs(x) >= y)
return x;
if (x < 0)
y = -y;
y = (x + y) - y;
if (y == 0.0)
y = copysign(y, x);
return y;
}
#define rint qemu_rint
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32(int v STATUS_PARAM)
{
return (float32)v;
}
float64 int32_to_float64(int v STATUS_PARAM)
{
return (float64)v;
}
#ifdef FLOATX80
floatx80 int32_to_floatx80(int v STATUS_PARAM)
{
return (floatx80)v;
}
#endif
float32 int64_to_float32( int64_t v STATUS_PARAM)
{
return (float32)v;
}
float64 int64_to_float64( int64_t v STATUS_PARAM)
{
return (float64)v;
}
#ifdef FLOATX80
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
{
return (floatx80)v;
}
#endif
/* XXX: this code implements the x86 behaviour, not the IEEE one. */
#if HOST_LONG_BITS == 32
static inline int long_to_int32(long a)
{
return a;
}
#else
static inline int long_to_int32(long a)
{
if (a != (int32_t)a)
a = 0x80000000;
return a;
}
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int float32_to_int32( float32 a STATUS_PARAM)
{
return long_to_int32(lrintf(a));
}
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
{
return (int)a;
}
int64_t float32_to_int64( float32 a STATUS_PARAM)
{
return llrintf(a);
}
int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
{
return (int64_t)a;
}
float64 float32_to_float64( float32 a STATUS_PARAM)
{
return a;
}
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
{
return a;
}
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int( float32 a STATUS_PARAM)
{
return rintf(a);
}
float32 float32_rem( float32 a, float32 b STATUS_PARAM)
{
return remainderf(a, b);
}
float32 float32_sqrt( float32 a STATUS_PARAM)
{
return sqrtf(a);
}
int float32_compare( float32 a, float32 b STATUS_PARAM )
{
if (a < b) {
return -1;
} else if (a == b) {
return 0;
} else if (a > b) {
return 1;
} else {
return 2;
}
}
int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
{
if (isless(a, b)) {
return -1;
} else if (a == b) {
return 0;
} else if (isgreater(a, b)) {
return 1;
} else {
return 2;
}
}
int float32_is_signaling_nan( float32 a1)
{
float32u u;
uint32_t a;
u.f = a1;
a = u.i;
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int float64_to_int32( float64 a STATUS_PARAM)
{
return long_to_int32(lrint(a));
}
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
{
return (int)a;
}
int64_t float64_to_int64( float64 a STATUS_PARAM)
{
return llrint(a);
}
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
{
return (int64_t)a;
}
float32 float64_to_float32( float64 a STATUS_PARAM)
{
return a;
}
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
{
return a;
}
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 a STATUS_PARAM)
{
return a;
}
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
float64 float64_trunc_to_int( float64 a STATUS_PARAM )
{
return trunc(a);
}
float64 float64_round_to_int( float64 a STATUS_PARAM )
{
#if defined(__arm__)
switch(STATUS(float_rounding_mode)) {
default:
case float_round_nearest_even:
asm("rndd %0, %1" : "=f" (a) : "f"(a));
break;
case float_round_down:
asm("rnddm %0, %1" : "=f" (a) : "f"(a));
break;
case float_round_up:
asm("rnddp %0, %1" : "=f" (a) : "f"(a));
break;
case float_round_to_zero:
asm("rnddz %0, %1" : "=f" (a) : "f"(a));
break;
}
#else
return rint(a);
#endif
}
float64 float64_rem( float64 a, float64 b STATUS_PARAM)
{
return remainder(a, b);
}
float64 float64_sqrt( float64 a STATUS_PARAM)
{
return sqrt(a);
}
int float64_compare( float64 a, float64 b STATUS_PARAM )
{
if (a < b) {
return -1;
} else if (a == b) {
return 0;
} else if (a > b) {
return 1;
} else {
return 2;
}
}
int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
{
if (isless(a, b)) {
return -1;
} else if (a == b) {
return 0;
} else if (isgreater(a, b)) {
return 1;
} else {
return 2;
}
}
int float64_is_signaling_nan( float64 a1)
{
float64u u;
uint64_t a;
u.f = a1;
a = u.i;
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
}
int float64_is_nan( float64 a1 )
{
float64u u;
uint64_t a;
u.f = a1;
a = u.i;
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
}
#ifdef FLOATX80
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int floatx80_to_int32( floatx80 a STATUS_PARAM)
{
return long_to_int32(lrintl(a));
}
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
{
return (int)a;
}
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
{
return llrintl(a);
}
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
{
return (int64_t)a;
}
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
{
return a;
}
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
{
return a;
}
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
{
return rintl(a);
}
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
{
return remainderl(a, b);
}
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
{
return sqrtl(a);
}
int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
{
if (a < b) {
return -1;
} else if (a == b) {
return 0;
} else if (a > b) {
return 1;
} else {
return 2;
}
}
int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
if (isless(a, b)) {
return -1;
} else if (a == b) {
return 0;
} else if (isgreater(a, b)) {
return 1;
} else {
return 2;
}
}
int floatx80_is_signaling_nan( floatx80 a1)
{
floatx80u u;
u.f = a1;
return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
}
#endif
|