1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include <elf.h>
#include <unistd.h>
#include <fcntl.h>
#include "thunk.h"
/* all dynamically generated functions begin with this code */
#define OP_PREFIX "op"
int elf_must_swap(Elf32_Ehdr *h)
{
union {
uint32_t i;
uint8_t b[4];
} swaptest;
swaptest.i = 1;
return (h->e_ident[EI_DATA] == ELFDATA2MSB) !=
(swaptest.b[0] == 0);
}
void swab16s(uint16_t *p)
{
*p = bswap16(*p);
}
void swab32s(uint32_t *p)
{
*p = bswap32(*p);
}
void swab64s(uint32_t *p)
{
*p = bswap64(*p);
}
void elf_swap_ehdr(Elf32_Ehdr *h)
{
swab16s(&h->e_type); /* Object file type */
swab16s(&h-> e_machine); /* Architecture */
swab32s(&h-> e_version); /* Object file version */
swab32s(&h-> e_entry); /* Entry point virtual address */
swab32s(&h-> e_phoff); /* Program header table file offset */
swab32s(&h-> e_shoff); /* Section header table file offset */
swab32s(&h-> e_flags); /* Processor-specific flags */
swab16s(&h-> e_ehsize); /* ELF header size in bytes */
swab16s(&h-> e_phentsize); /* Program header table entry size */
swab16s(&h-> e_phnum); /* Program header table entry count */
swab16s(&h-> e_shentsize); /* Section header table entry size */
swab16s(&h-> e_shnum); /* Section header table entry count */
swab16s(&h-> e_shstrndx); /* Section header string table index */
}
void elf_swap_shdr(Elf32_Shdr *h)
{
swab32s(&h-> sh_name); /* Section name (string tbl index) */
swab32s(&h-> sh_type); /* Section type */
swab32s(&h-> sh_flags); /* Section flags */
swab32s(&h-> sh_addr); /* Section virtual addr at execution */
swab32s(&h-> sh_offset); /* Section file offset */
swab32s(&h-> sh_size); /* Section size in bytes */
swab32s(&h-> sh_link); /* Link to another section */
swab32s(&h-> sh_info); /* Additional section information */
swab32s(&h-> sh_addralign); /* Section alignment */
swab32s(&h-> sh_entsize); /* Entry size if section holds table */
}
void elf_swap_phdr(Elf32_Phdr *h)
{
swab32s(&h->p_type); /* Segment type */
swab32s(&h->p_offset); /* Segment file offset */
swab32s(&h->p_vaddr); /* Segment virtual address */
swab32s(&h->p_paddr); /* Segment physical address */
swab32s(&h->p_filesz); /* Segment size in file */
swab32s(&h->p_memsz); /* Segment size in memory */
swab32s(&h->p_flags); /* Segment flags */
swab32s(&h->p_align); /* Segment alignment */
}
int do_swap;
int e_machine;
uint16_t get16(uint16_t *p)
{
uint16_t val;
val = *p;
if (do_swap)
val = bswap16(val);
return val;
}
uint32_t get32(uint32_t *p)
{
uint32_t val;
val = *p;
if (do_swap)
val = bswap32(val);
return val;
}
void put16(uint16_t *p, uint16_t val)
{
if (do_swap)
val = bswap16(val);
*p = val;
}
void put32(uint32_t *p, uint32_t val)
{
if (do_swap)
val = bswap32(val);
*p = val;
}
void __attribute__((noreturn)) error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "dyngen: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
va_end(ap);
exit(1);
}
Elf32_Shdr *find_elf_section(Elf32_Shdr *shdr, int shnum, const char *shstr,
const char *name)
{
int i;
const char *shname;
Elf32_Shdr *sec;
for(i = 0; i < shnum; i++) {
sec = &shdr[i];
if (!sec->sh_name)
continue;
shname = shstr + sec->sh_name;
if (!strcmp(shname, name))
return sec;
}
return NULL;
}
void *load_data(int fd, long offset, unsigned int size)
{
char *data;
data = malloc(size);
if (!data)
return NULL;
lseek(fd, offset, SEEK_SET);
if (read(fd, data, size) != size) {
free(data);
return NULL;
}
return data;
}
int strstart(const char *str, const char *val, const char **ptr)
{
const char *p, *q;
p = str;
q = val;
while (*q != '\0') {
if (*p != *q)
return 0;
p++;
q++;
}
if (ptr)
*ptr = p;
return 1;
}
#define MAX_ARGS 3
/* generate op code */
void gen_code(const char *name, unsigned long offset, unsigned long size,
FILE *outfile, uint8_t *text, void *relocs, int nb_relocs, int reloc_sh_type,
Elf32_Sym *symtab, char *strtab)
{
int copy_size = 0;
uint8_t *p_start, *p_end;
int nb_args, i;
uint8_t args_present[MAX_ARGS];
const char *sym_name, *p;
/* compute exact size excluding return instruction */
p_start = text + offset;
p_end = p_start + size;
switch(e_machine) {
case EM_386:
{
uint8_t *p;
p = p_end - 1;
/* find ret */
while (p > p_start && *p != 0xc3)
p--;
/* skip double ret */
if (p > p_start && p[-1] == 0xc3)
p--;
if (p == p_start)
error("empty code for %s", name);
copy_size = p - p_start;
}
break;
case EM_PPC:
{
uint8_t *p;
p = (void *)(p_end - 4);
/* find ret */
while (p > p_start && get32((uint32_t *)p) != 0x4e800020)
p -= 4;
/* skip double ret */
if (p > p_start && get32((uint32_t *)(p - 4)) == 0x4e800020)
p -= 4;
if (p == p_start)
error("empty code for %s", name);
copy_size = p - p_start;
}
break;
default:
error("unsupported CPU (%d)", e_machine);
}
/* compute the number of arguments by looking at the relocations */
for(i = 0;i < MAX_ARGS; i++)
args_present[i] = 0;
if (reloc_sh_type == SHT_REL) {
Elf32_Rel *rel;
int n;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (strstart(sym_name, "__op_param", &p)) {
n = strtoul(p, NULL, 10);
if (n >= MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
} else {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
} else {
Elf32_Rela *rel;
int n;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (strstart(sym_name, "__op_param", &p)) {
n = strtoul(p, NULL, 10);
if (n >= MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
} else {
fprintf(outfile, "extern char %s;\n", sym_name);
}
}
}
}
nb_args = 0;
while (nb_args < MAX_ARGS && args_present[nb_args])
nb_args++;
for(i = nb_args; i < MAX_ARGS; i++) {
if (args_present[i])
error("inconsistent argument numbering in %s", name);
}
/* output C code */
fprintf(outfile, "extern void %s();\n", name);
fprintf(outfile, "static inline void gen_%s(", name);
if (nb_args == 0) {
fprintf(outfile, "void");
} else {
for(i = 0; i < nb_args; i++) {
if (i != 0)
fprintf(outfile, ", ");
fprintf(outfile, "long param%d", i + 1);
}
}
fprintf(outfile, ")\n");
fprintf(outfile, "{\n");
fprintf(outfile, " memcpy(gen_code_ptr, &%s, %d);\n", name, copy_size);
/* patch relocations */
switch(e_machine) {
case EM_386:
{
Elf32_Rel *rel;
char name[256];
int type;
long addend;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
if (strstart(sym_name, "__op_param", &p)) {
snprintf(name, sizeof(name), "param%s", p);
} else {
snprintf(name, sizeof(name), "(long)(&%s)", sym_name);
}
type = ELF32_R_TYPE(rel->r_info);
addend = get32((uint32_t *)(text + rel->r_offset));
switch(type) {
case R_386_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n",
rel->r_offset - offset, name, addend);
break;
case R_386_PC32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %ld) = %s - (long)(gen_code_ptr + %ld) + %ld;\n",
rel->r_offset - offset, name, rel->r_offset - offset, addend);
break;
default:
error("unsupported i386 relocation (%d)", type);
}
}
}
}
break;
default:
error("unsupported CPU for relocations (%d)", e_machine);
}
fprintf(outfile, " gen_code_ptr += %d;\n", copy_size);
fprintf(outfile, "}\n\n");
}
/* load an elf object file */
int load_elf(const char *filename, FILE *outfile)
{
int fd;
Elf32_Ehdr ehdr;
Elf32_Shdr *sec, *shdr, *symtab_sec, *strtab_sec, *text_sec;
int i, j, nb_syms;
Elf32_Sym *symtab, *sym;
const char *cpu_name;
char *shstr, *strtab;
uint8_t *text;
void *relocs;
int nb_relocs, reloc_sh_type;
fd = open(filename, O_RDONLY);
if (fd < 0)
error("can't open file '%s'", filename);
/* Read ELF header. */
if (read(fd, &ehdr, sizeof (ehdr)) != sizeof (ehdr))
error("unable to read file header");
/* Check ELF identification. */
if (ehdr.e_ident[EI_MAG0] != ELFMAG0
|| ehdr.e_ident[EI_MAG1] != ELFMAG1
|| ehdr.e_ident[EI_MAG2] != ELFMAG2
|| ehdr.e_ident[EI_MAG3] != ELFMAG3
|| ehdr.e_ident[EI_CLASS] != ELFCLASS32
|| ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
error("bad ELF header");
}
do_swap = elf_must_swap(&ehdr);
if (do_swap)
elf_swap_ehdr(&ehdr);
if (ehdr.e_type != ET_REL)
error("ELF object file expected");
if (ehdr.e_version != EV_CURRENT)
error("Invalid ELF version");
e_machine = ehdr.e_machine;
/* read section headers */
shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(Elf32_Shdr));
if (do_swap) {
for(i = 0; i < ehdr.e_shnum; i++) {
elf_swap_shdr(&shdr[i]);
}
}
sec = &shdr[ehdr.e_shstrndx];
shstr = load_data(fd, sec->sh_offset, sec->sh_size);
/* text section */
text_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".text");
if (!text_sec)
error("could not find .text section");
text = load_data(fd, text_sec->sh_offset, text_sec->sh_size);
/* find text relocations, if any */
nb_relocs = 0;
relocs = NULL;
reloc_sh_type = 0;
for(i = 0; i < ehdr.e_shnum; i++) {
sec = &shdr[i];
if ((sec->sh_type == SHT_REL || sec->sh_type == SHT_RELA) &&
sec->sh_info == (text_sec - shdr)) {
reloc_sh_type = sec->sh_type;
relocs = load_data(fd, sec->sh_offset, sec->sh_size);
nb_relocs = sec->sh_size / sec->sh_entsize;
if (do_swap) {
if (sec->sh_type == SHT_REL) {
Elf32_Rel *rel = relocs;
for(j = 0, rel = relocs; j < nb_relocs; j++, rel++) {
swab32s(&rel->r_offset);
swab32s(&rel->r_info);
}
} else {
Elf32_Rela *rel = relocs;
for(j = 0, rel = relocs; j < nb_relocs; j++, rel++) {
swab32s(&rel->r_offset);
swab32s(&rel->r_info);
swab32s(&rel->r_addend);
}
}
}
break;
}
}
symtab_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".symtab");
if (!symtab_sec)
error("could not find .symtab section");
strtab_sec = &shdr[symtab_sec->sh_link];
symtab = load_data(fd, symtab_sec->sh_offset, symtab_sec->sh_size);
strtab = load_data(fd, strtab_sec->sh_offset, strtab_sec->sh_size);
nb_syms = symtab_sec->sh_size / sizeof(Elf32_Sym);
if (do_swap) {
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
swab32s(&sym->st_name);
swab32s(&sym->st_value);
swab32s(&sym->st_size);
swab16s(&sym->st_shndx);
}
}
switch(e_machine) {
case EM_386:
cpu_name = "i386";
break;
case EM_PPC:
cpu_name = "ppc";
break;
case EM_MIPS:
cpu_name = "mips";
break;
case EM_ARM:
cpu_name = "arm";
break;
case EM_SPARC:
cpu_name = "sparc";
break;
default:
error("unsupported CPU (e_machine=%d)", e_machine);
}
fprintf(outfile, "#include \"gen-%s.h\"\n\n", cpu_name);
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name;
name = strtab + sym->st_name;
if (strstart(name, "op_", NULL) ||
strstart(name, "op1_", NULL) ||
strstart(name, "op2_", NULL) ||
strstart(name, "op3_", NULL)) {
#if 0
printf("%4d: %s pos=0x%08x len=%d\n",
i, name, sym->st_value, sym->st_size);
#endif
if (sym->st_shndx != (text_sec - shdr))
error("invalid section for opcode (0x%x)", sym->st_shndx);
gen_code(name, sym->st_value, sym->st_size, outfile,
text, relocs, nb_relocs, reloc_sh_type, symtab, strtab);
}
}
close(fd);
return 0;
}
void usage(void)
{
printf("dyngen (c) 2003 Fabrice Bellard\n"
"usage: dyngen [-o outfile] objfile\n"
"Generate a dynamic code generator from an object file\n");
exit(1);
}
int main(int argc, char **argv)
{
int c;
const char *filename, *outfilename;
FILE *outfile;
outfilename = "out.c";
for(;;) {
c = getopt(argc, argv, "ho:");
if (c == -1)
break;
switch(c) {
case 'h':
usage();
break;
case 'o':
outfilename = optarg;
break;
}
}
if (optind >= argc)
usage();
filename = argv[optind];
outfile = fopen(outfilename, "w");
if (!outfile)
error("could not open '%s'", outfilename);
load_elf(filename, outfile);
fclose(outfile);
return 0;
}
|