1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
Aspeed family boards (``ast2500-evb``, ``ast2600-evb``, ``ast2700-evb``, ``bletchley-bmc``, ``fuji-bmc``, ``fby35-bmc``, ``fp5280g2-bmc``, ``g220a-bmc``, ``palmetto-bmc``, ``qcom-dc-scm-v1-bmc``, ``qcom-firework-bmc``, ``quanta-q71l-bmc``, ``rainier-bmc``, ``romulus-bmc``, ``sonorapass-bmc``, ``supermicrox11-bmc``, ``tiogapass-bmc``, ``tacoma-bmc``, ``witherspoon-bmc``, ``yosemitev2-bmc``)
========================================================================================================================================================================================================================================================================================================================================================================================================
The QEMU Aspeed machines model BMCs of various OpenPOWER systems and
Aspeed evaluation boards. They are based on different releases of the
Aspeed SoC : the AST2400 integrating an ARM926EJ-S CPU (400MHz), the
AST2500 with an ARM1176JZS CPU (800MHz), the AST2600
with dual cores ARM Cortex-A7 CPUs (1.2GHz) and more recently the AST2700
with quad cores ARM Cortex-A35 64 bits CPUs (1.6GHz)
The SoC comes with RAM, Gigabit ethernet, USB, SD/MMC, USB, SPI, I2C,
etc.
AST2400 SoC based machines :
- ``palmetto-bmc`` OpenPOWER Palmetto POWER8 BMC
- ``quanta-q71l-bmc`` OpenBMC Quanta BMC
- ``supermicrox11-bmc`` Supermicro X11 BMC
AST2500 SoC based machines :
- ``ast2500-evb`` Aspeed AST2500 Evaluation board
- ``romulus-bmc`` OpenPOWER Romulus POWER9 BMC
- ``witherspoon-bmc`` OpenPOWER Witherspoon POWER9 BMC
- ``sonorapass-bmc`` OCP SonoraPass BMC
- ``fp5280g2-bmc`` Inspur FP5280G2 BMC
- ``g220a-bmc`` Bytedance G220A BMC
- ``yosemitev2-bmc`` Facebook YosemiteV2 BMC
- ``tiogapass-bmc`` Facebook Tiogapass BMC
AST2600 SoC based machines :
- ``ast2600-evb`` Aspeed AST2600 Evaluation board (Cortex-A7)
- ``tacoma-bmc`` OpenPOWER Witherspoon POWER9 AST2600 BMC
- ``rainier-bmc`` IBM Rainier POWER10 BMC
- ``fuji-bmc`` Facebook Fuji BMC
- ``bletchley-bmc`` Facebook Bletchley BMC
- ``fby35-bmc`` Facebook fby35 BMC
- ``qcom-dc-scm-v1-bmc`` Qualcomm DC-SCM V1 BMC
- ``qcom-firework-bmc`` Qualcomm Firework BMC
AST2700 SoC based machines :
- ``ast2700-evb`` Aspeed AST2700 Evaluation board (Cortex-A35)
Supported devices
-----------------
* SMP (for the AST2600 Cortex-A7)
* Interrupt Controller (VIC)
* Timer Controller
* RTC Controller
* I2C Controller, including the new register interface of the AST2600
* System Control Unit (SCU)
* SRAM mapping
* X-DMA Controller (basic interface)
* Static Memory Controller (SMC or FMC) - Only SPI Flash support
* SPI Memory Controller
* USB 2.0 Controller
* SD/MMC storage controllers
* SDRAM controller (dummy interface for basic settings and training)
* Watchdog Controller
* GPIO Controller (Master only)
* UART
* Ethernet controllers
* Front LEDs (PCA9552 on I2C bus)
* LPC Peripheral Controller (a subset of subdevices are supported)
* Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA
* ADC
* Secure Boot Controller (AST2600)
* eMMC Boot Controller (dummy)
* PECI Controller (minimal)
* I3C Controller
* Internal Bridge Controller (SLI dummy)
Missing devices
---------------
* Coprocessor support
* PWM and Fan Controller
* Slave GPIO Controller
* Super I/O Controller
* PCI-Express 1 Controller
* Graphic Display Controller
* MCTP Controller
* Mailbox Controller
* Virtual UART
* eSPI Controller
Boot options
------------
The Aspeed machines can be started using the ``-kernel`` and ``-dtb`` options
to load a Linux kernel or from a firmware. Images can be downloaded from the
OpenBMC jenkins :
https://jenkins.openbmc.org/job/ci-openbmc/lastSuccessfulBuild/
or directly from the OpenBMC GitHub release repository :
https://github.com/openbmc/openbmc/releases
or directly from the ASPEED Forked OpenBMC GitHub release repository :
https://github.com/AspeedTech-BMC/openbmc/releases
Booting from a kernel image
^^^^^^^^^^^^^^^^^^^^^^^^^^^
To boot a kernel directly from a Linux build tree:
.. code-block:: bash
$ qemu-system-arm -M ast2600-evb -nographic \
-kernel arch/arm/boot/zImage \
-dtb arch/arm/boot/dts/aspeed-ast2600-evb.dtb \
-initrd rootfs.cpio
Booting from a flash image
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The machine options specific to Aspeed to boot from a flash image are :
* ``execute-in-place`` which emulates the boot from the CE0 flash
device by using the FMC controller to load the instructions, and
not simply from RAM. This takes a little longer.
* ``fmc-model`` to change the default FMC Flash model. FW needs
support for the chip model to boot.
* ``spi-model`` to change the default SPI Flash model.
To boot the machine from the flash image, use an MTD drive :
.. code-block:: bash
$ qemu-system-arm -M romulus-bmc -nic user \
-drive file=obmc-phosphor-image-romulus.static.mtd,format=raw,if=mtd -nographic
To use other flash models, for instance a different FMC chip and a
bigger (64M) SPI for the ``ast2500-evb`` machine, run :
.. code-block:: bash
-M ast2500-evb,fmc-model=mx25l25635e,spi-model=mx66u51235f
When more flexibility is needed to define the flash devices, to use
different flash models or define all flash devices (up to 8), the
``-nodefaults`` QEMU option can be used to avoid creating the default
flash devices.
Flash devices should then be created from the command line and attached
to a block device :
.. code-block:: bash
$ qemu-system-arm -M ast2600-evb \
-blockdev node-name=fmc0,driver=file,filename=/path/to/fmc0.img \
-device mx66u51235f,bus=ssi.0,cs=0x0,drive=fmc0 \
-blockdev node-name=fmc1,driver=file,filename=/path/to/fmc1.img \
-device mx66u51235f,bus=ssi.0,cs=0x1,drive=fmc1 \
-blockdev node-name=spi1,driver=file,filename=/path/to/spi1.img \
-device mx66u51235f,cs=0x0,bus=ssi.1,drive=spi1 \
-nographic -nodefaults
In that case, the machine boots fetching instructions from the FMC0
device. It is slower to start but closer to what HW does. Using the
machine option ``execute-in-place`` has a similar effect.
Booting from an eMMC image
^^^^^^^^^^^^^^^^^^^^^^^^^^
The machine options specific to Aspeed machines to boot from an eMMC
image are :
* ``boot-emmc`` to set or unset boot from eMMC (AST2600).
Only the ``ast2600-evb`` and ``rainier-emmc`` machines have support to
boot from an eMMC device. In this case, the machine assumes that the
eMMC image includes special boot partitions. Such an image can be
built this way :
.. code-block:: bash
$ dd if=/dev/zero of=mmc-bootarea.img count=2 bs=1M
$ dd if=u-boot-spl.bin of=mmc-bootarea.img conv=notrunc
$ dd if=u-boot.bin of=mmc-bootarea.img conv=notrunc count=64 bs=1K
$ cat mmc-bootarea.img obmc-phosphor-image.wic > mmc.img
$ truncate --size 16GB mmc.img
Boot the machine ``rainier-emmc`` with :
.. code-block:: bash
$ qemu-system-arm -M rainier-bmc \
-drive file=mmc.img,format=raw,if=sd,index=2 \
-nographic
The ``boot-emmc`` option can be set or unset, to change the default
boot mode of machine: SPI or eMMC. This can be useful to boot the
``ast2600-evb`` machine from an eMMC device (default being SPI) or to
boot the ``rainier-bmc`` machine from a flash device (default being
eMMC).
As an example, here is how to to boot the ``rainier-bmc`` machine from
the flash device with ``boot-emmc=false`` and let the machine use an
eMMC image :
.. code-block:: bash
$ qemu-system-arm -M rainier-bmc,boot-emmc=false \
-drive file=flash.img,format=raw,if=mtd \
-drive file=mmc.img,format=raw,if=sd,index=2 \
-nographic
It should be noted that in this case the eMMC device must not have
boot partitions, otherwise the contents will not be accessible to the
machine. This limitation is due to the use of the ``-drive``
interface.
Ideally, one should be able to define the eMMC device and the
associated backend directly on the command line, such as :
.. code-block:: bash
-blockdev node-name=emmc0,driver=file,filename=mmc.img \
-device emmc,bus=sdhci-bus.2,drive=emmc0,boot-partition-size=1048576,boot-config=8
This is not yet supported (as of QEMU-10.0). Work is needed to
refactor the sdhci bus model.
Other booting options
^^^^^^^^^^^^^^^^^^^^^
Other machine options specific to Aspeed machines are :
* ``bmc-console`` to change the default console device. Most of the
machines use the ``UART5`` device for a boot console, which is
mapped on ``/dev/ttyS4`` under Linux, but it is not always the
case.
To change the boot console and use device ``UART3`` (``/dev/ttyS2``
under Linux), use :
.. code-block:: bash
-M ast2500-evb,bmc-console=uart3
Booting the ast2700-evb machine
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Boot the AST2700 machine from the flash image, use an MTD drive :
.. code-block:: bash
IMGDIR=ast2700-default
UBOOT_SIZE=$(stat --format=%s -L ${IMGDIR}/u-boot-nodtb.bin)
$ qemu-system-aarch64 -M ast2700-evb \
-device loader,force-raw=on,addr=0x400000000,file=${IMGDIR}/u-boot-nodtb.bin \
-device loader,force-raw=on,addr=$((0x400000000 + ${UBOOT_SIZE})),file=${IMGDIR}/u-boot.dtb \
-device loader,force-raw=on,addr=0x430000000,file=${IMGDIR}/bl31.bin \
-device loader,force-raw=on,addr=0x430080000,file=${IMGDIR}/optee/tee-raw.bin \
-device loader,cpu-num=0,addr=0x430000000 \
-device loader,cpu-num=1,addr=0x430000000 \
-device loader,cpu-num=2,addr=0x430000000 \
-device loader,cpu-num=3,addr=0x430000000 \
-smp 4 \
-drive file=${IMGDIR}/image-bmc,format=raw,if=mtd \
-nographic
Aspeed minibmc family boards (``ast1030-evb``)
==================================================================
The QEMU Aspeed machines model mini BMCs of various Aspeed evaluation
boards. They are based on different releases of the
Aspeed SoC : the AST1030 integrating an ARM Cortex M4F CPU (200MHz).
The SoC comes with SRAM, SPI, I2C, etc.
AST1030 SoC based machines :
- ``ast1030-evb`` Aspeed AST1030 Evaluation board (Cortex-M4F)
Supported devices
-----------------
* SMP (for the AST1030 Cortex-M4F)
* Interrupt Controller (VIC)
* Timer Controller
* I2C Controller
* System Control Unit (SCU)
* SRAM mapping
* Static Memory Controller (SMC or FMC) - Only SPI Flash support
* SPI Memory Controller
* USB 2.0 Controller
* Watchdog Controller
* GPIO Controller (Master only)
* UART
* LPC Peripheral Controller (a subset of subdevices are supported)
* Hash/Crypto Engine (HACE) - Hash support only. TODO: HMAC and RSA
* ADC
* Secure Boot Controller
* PECI Controller (minimal)
Missing devices
---------------
* PWM and Fan Controller
* Slave GPIO Controller
* Mailbox Controller
* Virtual UART
* eSPI Controller
* I3C Controller
Boot options
------------
The Aspeed machines can be started using the ``-kernel`` to load a
Zephyr OS or from a firmware. Images can be downloaded from the
ASPEED GitHub release repository :
https://github.com/AspeedTech-BMC/zephyr/releases
To boot a kernel directly from a Zephyr build tree:
.. code-block:: bash
$ qemu-system-arm -M ast1030-evb -nographic \
-kernel zephyr.elf
|