aboutsummaryrefslogtreecommitdiff
path: root/docs/devel/writing-qmp-commands.rst
blob: 6a10a06c483c961f1061d73b3cebf6014d6e5443 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
How to write QMP commands using the QAPI framework
==================================================

This document is a step-by-step guide on how to write new QMP commands using
the QAPI framework. It also shows how to implement new style HMP commands.

This document doesn't discuss QMP protocol level details, nor does it dive
into the QAPI framework implementation.

For an in-depth introduction to the QAPI framework, please refer to
docs/devel/qapi-code-gen.txt. For documentation about the QMP protocol,
start with docs/interop/qmp-intro.txt.


Overview
--------

Generally speaking, the following steps should be taken in order to write a
new QMP command.

1. Define the command and any types it needs in the appropriate QAPI
   schema module.

2. Write the QMP command itself, which is a regular C function. Preferably,
   the command should be exported by some QEMU subsystem. But it can also be
   added to the monitor/qmp-cmds.c file

3. At this point the command can be tested under the QMP protocol

4. Write the HMP command equivalent. This is not required and should only be
   done if it does make sense to have the functionality in HMP. The HMP command
   is implemented in terms of the QMP command

The following sections will demonstrate each of the steps above. We will start
very simple and get more complex as we progress.


Testing
-------

For all the examples in the next sections, the test setup is the same and is
shown here.

First, QEMU should be started like this::

 # qemu-system-TARGET [...] \
     -chardev socket,id=qmp,port=4444,host=localhost,server=on \
     -mon chardev=qmp,mode=control,pretty=on

Then, in a different terminal::

 $ telnet localhost 4444
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 {
     "QMP": {
         "version": {
             "qemu": {
                 "micro": 50,
                 "minor": 15,
                 "major": 0
             },
             "package": ""
         },
         "capabilities": [
         ]
     }
 }

The above output is the QMP server saying you're connected. The server is
actually in capabilities negotiation mode. To enter in command mode type::

 { "execute": "qmp_capabilities" }

Then the server should respond::

 {
     "return": {
     }
 }

Which is QMP's way of saying "the latest command executed OK and didn't return
any data". Now you're ready to enter the QMP example commands as explained in
the following sections.


Writing a command that doesn't return data
------------------------------------------

That's the most simple QMP command that can be written. Usually, this kind of
command carries some meaningful action in QEMU but here it will just print
"Hello, world" to the standard output.

Our command will be called "hello-world". It takes no arguments, nor does it
return any data.

The first step is defining the command in the appropriate QAPI schema
module.  We pick module qapi/misc.json, and add the following line at
the bottom::

 { 'command': 'hello-world' }

The "command" keyword defines a new QMP command. It's an JSON object. All
schema entries are JSON objects. The line above will instruct the QAPI to
generate any prototypes and the necessary code to marshal and unmarshal
protocol data.

The next step is to write the "hello-world" implementation. As explained
earlier, it's preferable for commands to live in QEMU subsystems. But
"hello-world" doesn't pertain to any, so we put its implementation in
monitor/qmp-cmds.c::

 void qmp_hello_world(Error **errp)
 {
     printf("Hello, world!\n");
 }

There are a few things to be noticed:

1. QMP command implementation functions must be prefixed with "qmp\_"
2. qmp_hello_world() returns void, this is in accordance with the fact that the
   command doesn't return any data
3. It takes an "Error \*\*" argument. This is required. Later we will see how to
   return errors and take additional arguments. The Error argument should not
   be touched if the command doesn't return errors
4. We won't add the function's prototype. That's automatically done by the QAPI
5. Printing to the terminal is discouraged for QMP commands, we do it here
   because it's the easiest way to demonstrate a QMP command

You're done. Now build qemu, run it as suggested in the "Testing" section,
and then type the following QMP command::

 { "execute": "hello-world" }

Then check the terminal running qemu and look for the "Hello, world" string. If
you don't see it then something went wrong.


Arguments
~~~~~~~~~

Let's add an argument called "message" to our "hello-world" command. The new
argument will contain the string to be printed to stdout. It's an optional
argument, if it's not present we print our default "Hello, World" string.

The first change we have to do is to modify the command specification in the
schema file to the following::

 { 'command': 'hello-world', 'data': { '*message': 'str' } }

Notice the new 'data' member in the schema. It's an JSON object whose each
element is an argument to the command in question. Also notice the asterisk,
it's used to mark the argument optional (that means that you shouldn't use it
for mandatory arguments). Finally, 'str' is the argument's type, which
stands for "string". The QAPI also supports integers, booleans, enumerations
and user defined types.

Now, let's update our C implementation in monitor/qmp-cmds.c::

 void qmp_hello_world(bool has_message, const char *message, Error **errp)
 {
     if (has_message) {
         printf("%s\n", message);
     } else {
         printf("Hello, world\n");
     }
 }

There are two important details to be noticed:

1. All optional arguments are accompanied by a 'has\_' boolean, which is set
   if the optional argument is present or false otherwise
2. The C implementation signature must follow the schema's argument ordering,
   which is defined by the "data" member

Time to test our new version of the "hello-world" command. Build qemu, run it as
described in the "Testing" section and then send two commands::

 { "execute": "hello-world" }
 {
     "return": {
     }
 }

 { "execute": "hello-world", "arguments": { "message": "We love qemu" } }
 {
     "return": {
     }
 }

You should see "Hello, world" and "We love qemu" in the terminal running qemu,
if you don't see these strings, then something went wrong.


Errors
~~~~~~

QMP commands should use the error interface exported by the error.h header
file. Basically, most errors are set by calling the error_setg() function.

Let's say we don't accept the string "message" to contain the word "love". If
it does contain it, we want the "hello-world" command to return an error::

 void qmp_hello_world(bool has_message, const char *message, Error **errp)
 {
     if (has_message) {
         if (strstr(message, "love")) {
             error_setg(errp, "the word 'love' is not allowed");
             return;
         }
         printf("%s\n", message);
     } else {
         printf("Hello, world\n");
     }
 }

The first argument to the error_setg() function is the Error pointer
to pointer, which is passed to all QMP functions. The next argument is a human
description of the error, this is a free-form printf-like string.

Let's test the example above. Build qemu, run it as defined in the "Testing"
section, and then issue the following command::

 { "execute": "hello-world", "arguments": { "message": "all you need is love" } }

The QMP server's response should be::

 {
     "error": {
         "class": "GenericError",
         "desc": "the word 'love' is not allowed"
     }
 }

Note that error_setg() produces a "GenericError" class.  In general,
all QMP errors should have that error class.  There are two exceptions
to this rule:

 1. To support a management application's need to recognize a specific
    error for special handling

 2. Backward compatibility

If the failure you want to report falls into one of the two cases above,
use error_set() with a second argument of an ErrorClass value.


Command Documentation
~~~~~~~~~~~~~~~~~~~~~

There's only one step missing to make "hello-world"'s implementation complete,
and that's its documentation in the schema file.

There are many examples of such documentation in the schema file already, but
here goes "hello-world"'s new entry for qapi/misc.json::

 ##
 # @hello-world:
 #
 # Print a client provided string to the standard output stream.
 #
 # @message: string to be printed
 #
 # Returns: Nothing on success.
 #
 # Notes: if @message is not provided, the "Hello, world" string will
 #        be printed instead
 #
 # Since: <next qemu stable release, eg. 1.0>
 ##
 { 'command': 'hello-world', 'data': { '*message': 'str' } }

Please, note that the "Returns" clause is optional if a command doesn't return
any data nor any errors.


Implementing the HMP command
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now that the QMP command is in place, we can also make it available in the human
monitor (HMP).

With the introduction of the QAPI, HMP commands make QMP calls. Most of the
time HMP commands are simple wrappers. All HMP commands implementation exist in
the monitor/hmp-cmds.c file.

Here's the implementation of the "hello-world" HMP command::

 void hmp_hello_world(Monitor *mon, const QDict *qdict)
 {
     const char *message = qdict_get_try_str(qdict, "message");
     Error *err = NULL;

     qmp_hello_world(!!message, message, &err);
     if (err) {
         monitor_printf(mon, "%s\n", error_get_pretty(err));
         error_free(err);
         return;
     }
 }

Also, you have to add the function's prototype to the hmp.h file.

There are three important points to be noticed:

1. The "mon" and "qdict" arguments are mandatory for all HMP functions. The
   former is the monitor object. The latter is how the monitor passes
   arguments entered by the user to the command implementation
2. hmp_hello_world() performs error checking. In this example we just print
   the error description to the user, but we could do more, like taking
   different actions depending on the error qmp_hello_world() returns
3. The "err" variable must be initialized to NULL before performing the
   QMP call

There's one last step to actually make the command available to monitor users,
we should add it to the hmp-commands.hx file::

    {
        .name       = "hello-world",
        .args_type  = "message:s?",
        .params     = "hello-world [message]",
        .help       = "Print message to the standard output",
        .cmd        = hmp_hello_world,
    },

::

 STEXI
 @item hello_world @var{message}
 @findex hello_world
 Print message to the standard output
 ETEXI

To test this you have to open a user monitor and issue the "hello-world"
command. It might be instructive to check the command's documentation with
HMP's "help" command.

Please, check the "-monitor" command-line option to know how to open a user
monitor.


Writing a command that returns data
-----------------------------------

A QMP command is capable of returning any data the QAPI supports like integers,
strings, booleans, enumerations and user defined types.

In this section we will focus on user defined types. Please, check the QAPI
documentation for information about the other types.


User Defined Types
~~~~~~~~~~~~~~~~~~

FIXME This example needs to be redone after commit 6d32717

For this example we will write the query-alarm-clock command, which returns
information about QEMU's timer alarm. For more information about it, please
check the "-clock" command-line option.

We want to return two pieces of information. The first one is the alarm clock's
name. The second one is when the next alarm will fire. The former information is
returned as a string, the latter is an integer in nanoseconds (which is not
very useful in practice, as the timer has probably already fired when the
information reaches the client).

The best way to return that data is to create a new QAPI type, as shown below::

 ##
 # @QemuAlarmClock
 #
 # QEMU alarm clock information.
 #
 # @clock-name: The alarm clock method's name.
 #
 # @next-deadline: The time (in nanoseconds) the next alarm will fire.
 #
 # Since: 1.0
 ##
 { 'type': 'QemuAlarmClock',
   'data': { 'clock-name': 'str', '*next-deadline': 'int' } }

The "type" keyword defines a new QAPI type. Its "data" member contains the
type's members. In this example our members are the "clock-name" and the
"next-deadline" one, which is optional.

Now let's define the query-alarm-clock command::

 ##
 # @query-alarm-clock
 #
 # Return information about QEMU's alarm clock.
 #
 # Returns a @QemuAlarmClock instance describing the alarm clock method
 # being currently used by QEMU (this is usually set by the '-clock'
 # command-line option).
 #
 # Since: 1.0
 ##
 { 'command': 'query-alarm-clock', 'returns': 'QemuAlarmClock' }

Notice the "returns" keyword. As its name suggests, it's used to define the
data returned by a command.

It's time to implement the qmp_query_alarm_clock() function, you can put it
in the qemu-timer.c file::

 QemuAlarmClock *qmp_query_alarm_clock(Error **errp)
 {
     QemuAlarmClock *clock;
     int64_t deadline;

     clock = g_malloc0(sizeof(*clock));

     deadline = qemu_next_alarm_deadline();
     if (deadline > 0) {
         clock->has_next_deadline = true;
         clock->next_deadline = deadline;
     }
     clock->clock_name = g_strdup(alarm_timer->name);

     return clock;
 }

There are a number of things to be noticed:

1. The QemuAlarmClock type is automatically generated by the QAPI framework,
   its members correspond to the type's specification in the schema file
2. As specified in the schema file, the function returns a QemuAlarmClock
   instance and takes no arguments (besides the "errp" one, which is mandatory
   for all QMP functions)
3. The "clock" variable (which will point to our QAPI type instance) is
   allocated by the regular g_malloc0() function. Note that we chose to
   initialize the memory to zero. This is recommended for all QAPI types, as
   it helps avoiding bad surprises (specially with booleans)
4. Remember that "next_deadline" is optional? All optional members have a
   'has_TYPE_NAME' member that should be properly set by the implementation,
   as shown above
5. Even static strings, such as "alarm_timer->name", should be dynamically
   allocated by the implementation. This is so because the QAPI also generates
   a function to free its types and it cannot distinguish between dynamically
   or statically allocated strings
6. You have to include "qapi/qapi-commands-misc.h" in qemu-timer.c

Time to test the new command. Build qemu, run it as described in the "Testing"
section and try this::

 { "execute": "query-alarm-clock" }
 {
     "return": {
         "next-deadline": 2368219,
         "clock-name": "dynticks"
     }
 }


The HMP command
~~~~~~~~~~~~~~~

Here's the HMP counterpart of the query-alarm-clock command::

 void hmp_info_alarm_clock(Monitor *mon)
 {
     QemuAlarmClock *clock;
     Error *err = NULL;

     clock = qmp_query_alarm_clock(&err);
     if (err) {
         monitor_printf(mon, "Could not query alarm clock information\n");
         error_free(err);
         return;
     }

     monitor_printf(mon, "Alarm clock method in use: '%s'\n", clock->clock_name);
     if (clock->has_next_deadline) {
         monitor_printf(mon, "Next alarm will fire in %" PRId64 " nanoseconds\n",
                        clock->next_deadline);
     }

    qapi_free_QemuAlarmClock(clock);
 }

It's important to notice that hmp_info_alarm_clock() calls
qapi_free_QemuAlarmClock() to free the data returned by qmp_query_alarm_clock().
For user defined types, the QAPI will generate a qapi_free_QAPI_TYPE_NAME()
function and that's what you have to use to free the types you define and
qapi_free_QAPI_TYPE_NAMEList() for list types (explained in the next section).
If the QMP call returns a string, then you should g_free() to free it.

Also note that hmp_info_alarm_clock() performs error handling. That's not
strictly required if you're sure the QMP function doesn't return errors, but
it's good practice to always check for errors.

Another important detail is that HMP's "info" commands don't go into the
hmp-commands.hx. Instead, they go into the info_cmds[] table, which is defined
in the monitor/misc.c file. The entry for the "info alarmclock" follows::

    {
        .name       = "alarmclock",
        .args_type  = "",
        .params     = "",
        .help       = "show information about the alarm clock",
        .cmd        = hmp_info_alarm_clock,
    },

To test this, run qemu and type "info alarmclock" in the user monitor.


Returning Lists
~~~~~~~~~~~~~~~

For this example, we're going to return all available methods for the timer
alarm, which is pretty much what the command-line option "-clock ?" does,
except that we're also going to inform which method is in use.

This first step is to define a new type::

 ##
 # @TimerAlarmMethod
 #
 # Timer alarm method information.
 #
 # @method-name: The method's name.
 #
 # @current: true if this alarm method is currently in use, false otherwise
 #
 # Since: 1.0
 ##
 { 'type': 'TimerAlarmMethod',
   'data': { 'method-name': 'str', 'current': 'bool' } }

The command will be called "query-alarm-methods", here is its schema
specification::

 ##
 # @query-alarm-methods
 #
 # Returns information about available alarm methods.
 #
 # Returns: a list of @TimerAlarmMethod for each method
 #
 # Since: 1.0
 ##
 { 'command': 'query-alarm-methods', 'returns': ['TimerAlarmMethod'] }

Notice the syntax for returning lists "'returns': ['TimerAlarmMethod']", this
should be read as "returns a list of TimerAlarmMethod instances".

The C implementation follows::

 TimerAlarmMethodList *qmp_query_alarm_methods(Error **errp)
 {
     TimerAlarmMethodList *method_list = NULL;
     const struct qemu_alarm_timer *p;
     bool current = true;

     for (p = alarm_timers; p->name; p++) {
         TimerAlarmMethod *value = g_malloc0(*value);
         value->method_name = g_strdup(p->name);
         value->current = current;
         QAPI_LIST_PREPEND(method_list, value);
         current = false;
     }

     return method_list;
 }

The most important difference from the previous examples is the
TimerAlarmMethodList type, which is automatically generated by the QAPI from
the TimerAlarmMethod type.

Each list node is represented by a TimerAlarmMethodList instance. We have to
allocate it, and that's done inside the for loop: the "info" pointer points to
an allocated node. We also have to allocate the node's contents, which is
stored in its "value" member. In our example, the "value" member is a pointer
to an TimerAlarmMethod instance.

Notice that the "current" variable is used as "true" only in the first
iteration of the loop. That's because the alarm timer method in use is the
first element of the alarm_timers array. Also notice that QAPI lists are handled
by hand and we return the head of the list.

Now Build qemu, run it as explained in the "Testing" section and try our new
command::

 { "execute": "query-alarm-methods" }
 {
     "return": [
         {
             "current": false,
             "method-name": "unix"
         },
         {
             "current": true,
             "method-name": "dynticks"
         }
     ]
 }

The HMP counterpart is a bit more complex than previous examples because it
has to traverse the list, it's shown below for reference::

 void hmp_info_alarm_methods(Monitor *mon)
 {
     TimerAlarmMethodList *method_list, *method;
     Error *err = NULL;

     method_list = qmp_query_alarm_methods(&err);
     if (err) {
         monitor_printf(mon, "Could not query alarm methods\n");
         error_free(err);
         return;
     }

     for (method = method_list; method; method = method->next) {
         monitor_printf(mon, "%c %s\n", method->value->current ? '*' : ' ',
                                        method->value->method_name);
     }

     qapi_free_TimerAlarmMethodList(method_list);
 }