aboutsummaryrefslogtreecommitdiff
path: root/docs/devel/qapi-code-gen.txt
blob: c9ba8ddb2eef2a3ad5a563ef3240459619d9271d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
= How to use the QAPI code generator =

Copyright IBM Corp. 2011
Copyright (C) 2012-2016 Red Hat, Inc.

This work is licensed under the terms of the GNU GPL, version 2 or
later. See the COPYING file in the top-level directory.

== Introduction ==

QAPI is a native C API within QEMU which provides management-level
functionality to internal and external users. For external
users/processes, this interface is made available by a JSON-based wire
format for the QEMU Monitor Protocol (QMP) for controlling qemu, as
well as the QEMU Guest Agent (QGA) for communicating with the guest.
The remainder of this document uses "Client JSON Protocol" when
referring to the wire contents of a QMP or QGA connection.

To map Client JSON Protocol interfaces to the native C QAPI
implementations, a JSON-based schema is used to define types and
function signatures, and a set of scripts is used to generate types,
signatures, and marshaling/dispatch code. This document will describe
how the schemas, scripts, and resulting code are used.


== QMP/Guest agent schema ==

A QAPI schema file is designed to be loosely based on JSON
(http://www.ietf.org/rfc/rfc8259.txt) with changes for quoting style
and the use of comments; a QAPI schema file is then parsed by a python
code generation program.  A valid QAPI schema consists of a series of
top-level expressions, with no commas between them.  Where
dictionaries (JSON objects) are used, they are parsed as python
OrderedDicts so that ordering is preserved (for predictable layout of
generated C structs and parameter lists).  Ordering doesn't matter
between top-level expressions or the keys within an expression, but
does matter within dictionary values for 'data' and 'returns' members
of a single expression.  QAPI schema input is written using 'single
quotes' instead of JSON's "double quotes" (in contrast, Client JSON
Protocol uses no comments, and while input accepts 'single quotes' as
an extension, output is strict JSON using only "double quotes").  As
in JSON, trailing commas are not permitted in arrays or dictionaries.
Input must be ASCII (although QMP supports full Unicode strings, the
QAPI parser does not).  At present, there is no place where a QAPI
schema requires the use of JSON numbers or null.


=== Comments ===

Comments are allowed; anything between an unquoted # and the following
newline is ignored.

A multi-line comment that starts and ends with a '##' line is a
documentation comment.  These are parsed by the documentation
generator, which recognizes certain markup detailed below.


==== Documentation markup ====

Comment text starting with '=' is a section title:

    # = Section title

Double the '=' for a subsection title:

    # == Subsection title

'|' denotes examples:

    # | Text of the example, may span
    # | multiple lines

'*' starts an itemized list:

    # * First item, may span
    #   multiple lines
    # * Second item

You can also use '-' instead of '*'.

A decimal number followed by '.' starts a numbered list:

    # 1. First item, may span
    #    multiple lines
    # 2. Second item

The actual number doesn't matter.  You could even use '*' instead of
'2.' for the second item.

Lists can't be nested.  Blank lines are currently not supported within
lists.

Additional whitespace between the initial '#' and the comment text is
permitted.

*foo* and _foo_ are for strong and emphasis styles respectively (they
do not work over multiple lines). @foo is used to reference a name in
the schema.

Example:

##
# = Section
# == Subsection
#
# Some text foo with *strong* and _emphasis_
# 1. with a list
# 2. like that
#
# And some code:
# | $ echo foo
# | -> do this
# | <- get that
#
##


==== Expression documentation ====

Each expression that isn't an include directive may be preceded by a
documentation block.  Such blocks are called expression documentation
blocks.

When documentation is required (see pragma 'doc-required'), expression
documentation blocks are mandatory.

The documentation block consists of a first line naming the
expression, an optional overview, a description of each argument (for
commands and events) or member (for structs, unions and alternates),
and optional tagged sections.

FIXME: the parser accepts these things in almost any order.

Extensions added after the expression was first released carry a
'(since x.y.z)' comment.

A tagged section starts with one of the following words:
"Note:"/"Notes:", "Since:", "Example"/"Examples", "Returns:", "TODO:".
The section ends with the start of a new section.

A 'Since: x.y.z' tagged section lists the release that introduced the
expression.

For example:

##
# @BlockStats:
#
# Statistics of a virtual block device or a block backing device.
#
# @device: If the stats are for a virtual block device, the name
#          corresponding to the virtual block device.
#
# @node-name: The node name of the device. (since 2.3)
#
# ... more members ...
#
# Since: 0.14.0
##
{ 'struct': 'BlockStats',
  'data': {'*device': 'str', '*node-name': 'str',
           ... more members ... } }

##
# @query-blockstats:
#
# Query the @BlockStats for all virtual block devices.
#
# @query-nodes: If true, the command will query all the
#               block nodes ... explain, explain ...  (since 2.3)
#
# Returns: A list of @BlockStats for each virtual block devices.
#
# Since: 0.14.0
#
# Example:
#
# -> { "execute": "query-blockstats" }
# <- {
#      ... lots of output ...
#    }
#
##
{ 'command': 'query-blockstats',
  'data': { '*query-nodes': 'bool' },
  'returns': ['BlockStats'] }

==== Free-form documentation ====

A documentation block that isn't an expression documentation block is
a free-form documentation block.  These may be used to provide
additional text and structuring content.


=== Schema overview ===

The schema sets up a series of types, as well as commands and events
that will use those types.  Forward references are allowed: the parser
scans in two passes, where the first pass learns all type names, and
the second validates the schema and generates the code.  This allows
the definition of complex structs that can have mutually recursive
types, and allows for indefinite nesting of Client JSON Protocol that
satisfies the schema.  A type name should not be defined more than
once.  It is permissible for the schema to contain additional types
not used by any commands or events in the Client JSON Protocol, for
the side effect of generated C code used internally.

There are eight top-level expressions recognized by the parser:
'include', 'pragma', 'command', 'struct', 'enum', 'union',
'alternate', and 'event'.  There are several groups of types: simple
types (a number of built-in types, such as 'int' and 'str'; as well as
enumerations), complex types (structs and two flavors of unions), and
alternate types (a choice between other types).  The 'command' and
'event' expressions can refer to existing types by name, or list an
anonymous type as a dictionary. Listing a type name inside an array
refers to a single-dimension array of that type; multi-dimension
arrays are not directly supported (although an array of a complex
struct that contains an array member is possible).

All names must begin with a letter, and contain only ASCII letters,
digits, hyphen, and underscore.  There are two exceptions: enum values
may start with a digit, and names that are downstream extensions (see
section Downstream extensions) start with underscore.

Names beginning with 'q_' are reserved for the generator, which uses
them for munging QMP names that resemble C keywords or other
problematic strings.  For example, a member named "default" in qapi
becomes "q_default" in the generated C code.

Types, commands, and events share a common namespace.  Therefore,
generally speaking, type definitions should always use CamelCase for
user-defined type names, while built-in types are lowercase.

Type names ending with 'Kind' or 'List' are reserved for the
generator, which uses them for implicit union enums and array types,
respectively.

Command names, and member names within a type, should be all lower
case with words separated by a hyphen.  However, some existing older
commands and complex types use underscore; when extending such
expressions, consistency is preferred over blindly avoiding
underscore.

Event names should be ALL_CAPS with words separated by underscore.

Member names starting with 'has-' or 'has_' are reserved for the
generator, which uses them for tracking optional members.

Any name (command, event, type, member, or enum value) beginning with
"x-" is marked experimental, and may be withdrawn or changed
incompatibly in a future release.

Pragma 'name-case-whitelist' lets you violate the rules on use of
upper and lower case.  Use for new code is strongly discouraged.

In the rest of this document, usage lines are given for each
expression type, with literal strings written in lower case and
placeholders written in capitals.  If a literal string includes a
prefix of '*', that key/value pair can be omitted from the expression.
For example, a usage statement that includes '*base':STRUCT-NAME
means that an expression has an optional key 'base', which if present
must have a value that forms a struct name.


=== Built-in Types ===

The following types are predefined, and map to C as follows:

  Schema    C          JSON
  str       char *     any JSON string, UTF-8
  number    double     any JSON number
  int       int64_t    a JSON number without fractional part
                       that fits into the C integer type
  int8      int8_t     likewise
  int16     int16_t    likewise
  int32     int32_t    likewise
  int64     int64_t    likewise
  uint8     uint8_t    likewise
  uint16    uint16_t   likewise
  uint32    uint32_t   likewise
  uint64    uint64_t   likewise
  size      uint64_t   like uint64_t, except StringInputVisitor
                       accepts size suffixes
  bool      bool       JSON true or false
  null      QNull *    JSON null
  any       QObject *  any JSON value
  QType     QType      JSON string matching enum QType values


=== Include directives ===

Usage: { 'include': STRING }

The QAPI schema definitions can be modularized using the 'include' directive:

 { 'include': 'path/to/file.json' }

The directive is evaluated recursively, and include paths are relative to the
file using the directive. Multiple includes of the same file are
idempotent.  No other keys should appear in the expression, and the include
value should be a string.

As a matter of style, it is a good idea to have all files be
self-contained, but at the moment, nothing prevents an included file
from making a forward reference to a type that is only introduced by
an outer file.  The parser may be made stricter in the future to
prevent incomplete include files.


=== Pragma directives ===

Usage: { 'pragma': DICT }

The pragma directive lets you control optional generator behavior.
The dictionary's entries are pragma names and values.

Pragma's scope is currently the complete schema.  Setting the same
pragma to different values in parts of the schema doesn't work.

Pragma 'doc-required' takes a boolean value.  If true, documentation
is required.  Default is false.

Pragma 'returns-whitelist' takes a list of command names that may
violate the rules on permitted return types.  Default is none.

Pragma 'name-case-whitelist' takes a list of names that may violate
rules on use of upper- vs. lower-case letters.  Default is none.


=== Struct types ===

Usage: { 'struct': STRING, 'data': DICT, '*base': STRUCT-NAME }

A struct is a dictionary containing a single 'data' key whose value is
a dictionary; the dictionary may be empty.  This corresponds to a
struct in C or an Object in JSON. Each value of the 'data' dictionary
must be the name of a type, or a one-element array containing a type
name.  An example of a struct is:

 { 'struct': 'MyType',
   'data': { 'member1': 'str', 'member2': 'int', '*member3': 'str' } }

The use of '*' as a prefix to the name means the member is optional in
the corresponding JSON protocol usage.

The default initialization value of an optional argument should not be changed
between versions of QEMU unless the new default maintains backward
compatibility to the user-visible behavior of the old default.

With proper documentation, this policy still allows some flexibility; for
example, documenting that a default of 0 picks an optimal buffer size allows
one release to declare the optimal size at 512 while another release declares
the optimal size at 4096 - the user-visible behavior is not the bytes used by
the buffer, but the fact that the buffer was optimal size.

On input structures (only mentioned in the 'data' side of a command), changing
from mandatory to optional is safe (older clients will supply the option, and
newer clients can benefit from the default); changing from optional to
mandatory is backwards incompatible (older clients may be omitting the option,
and must continue to work).

On output structures (only mentioned in the 'returns' side of a command),
changing from mandatory to optional is in general unsafe (older clients may be
expecting the member, and could crash if it is missing), although it
can be done if the only way that the optional argument will be omitted
is when it is triggered by the presence of a new input flag to the
command that older clients don't know to send.  Changing from optional
to mandatory is safe.

A structure that is used in both input and output of various commands
must consider the backwards compatibility constraints of both directions
of use.

A struct definition can specify another struct as its base.
In this case, the members of the base type are included as top-level members
of the new struct's dictionary in the Client JSON Protocol wire
format. An example definition is:

 { 'struct': 'BlockdevOptionsGenericFormat', 'data': { 'file': 'str' } }
 { 'struct': 'BlockdevOptionsGenericCOWFormat',
   'base': 'BlockdevOptionsGenericFormat',
   'data': { '*backing': 'str' } }

An example BlockdevOptionsGenericCOWFormat object on the wire could use
both members like this:

 { "file": "/some/place/my-image",
   "backing": "/some/place/my-backing-file" }


=== Enumeration types ===

Usage: { 'enum': STRING, 'data': ARRAY-OF-STRING }
       { 'enum': STRING, '*prefix': STRING, 'data': ARRAY-OF-STRING }

An enumeration type is a dictionary containing a single 'data' key
whose value is a list of strings.  An example enumeration is:

 { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] }

Nothing prevents an empty enumeration, although it is probably not
useful.  The list of strings should be lower case; if an enum name
represents multiple words, use '-' between words.  The string 'max' is
not allowed as an enum value, and values should not be repeated.

The enum constants will be named by using a heuristic to turn the
type name into a set of underscore separated words. For the example
above, 'MyEnum' will turn into 'MY_ENUM' giving a constant name
of 'MY_ENUM_VALUE1' for the first value. If the default heuristic
does not result in a desirable name, the optional 'prefix' member
can be used when defining the enum.

The enumeration values are passed as strings over the Client JSON
Protocol, but are encoded as C enum integral values in generated code.
While the C code starts numbering at 0, it is better to use explicit
comparisons to enum values than implicit comparisons to 0; the C code
will also include a generated enum member ending in _MAX for tracking
the size of the enum, useful when using common functions for
converting between strings and enum values.  Since the wire format
always passes by name, it is acceptable to reorder or add new
enumeration members in any location without breaking clients of Client
JSON Protocol; however, removing enum values would break
compatibility.  For any struct that has a member that will only contain
a finite set of string values, using an enum type for that member is
better than open-coding the member to be type 'str'.


=== Union types ===

Usage: { 'union': STRING, 'data': DICT }
or:    { 'union': STRING, 'data': DICT, 'base': STRUCT-NAME-OR-DICT,
         'discriminator': ENUM-MEMBER-OF-BASE }

Union types are used to let the user choose between several different
variants for an object.  There are two flavors: simple (no
discriminator or base), and flat (both discriminator and base).  A union
type is defined using a data dictionary as explained in the following
paragraphs.  The data dictionary for either type of union must not
be empty.

A simple union type defines a mapping from automatic discriminator
values to data types like in this example:

 { 'struct': 'BlockdevOptionsFile', 'data': { 'filename': 'str' } }
 { 'struct': 'BlockdevOptionsQcow2',
   'data': { 'backing': 'str', '*lazy-refcounts': 'bool' } }

 { 'union': 'BlockdevOptionsSimple',
   'data': { 'file': 'BlockdevOptionsFile',
             'qcow2': 'BlockdevOptionsQcow2' } }

In the Client JSON Protocol, a simple union is represented by a
dictionary that contains the 'type' member as a discriminator, and a
'data' member that is of the specified data type corresponding to the
discriminator value, as in these examples:

 { "type": "file", "data": { "filename": "/some/place/my-image" } }
 { "type": "qcow2", "data": { "backing": "/some/place/my-image",
                              "lazy-refcounts": true } }

The generated C code uses a struct containing a union. Additionally,
an implicit C enum 'NameKind' is created, corresponding to the union
'Name', for accessing the various branches of the union.  No branch of
the union can be named 'max', as this would collide with the implicit
enum.  The value for each branch can be of any type.

A flat union definition avoids nesting on the wire, and specifies a
set of common members that occur in all variants of the union.  The
'base' key must specify either a type name (the type must be a
struct, not a union), or a dictionary representing an anonymous type.
All branches of the union must be complex types, and the top-level
members of the union dictionary on the wire will be combination of
members from both the base type and the appropriate branch type (when
merging two dictionaries, there must be no keys in common).  The
'discriminator' member must be the name of a non-optional enum-typed
member of the base struct.

The following example enhances the above simple union example by
adding an optional common member 'read-only', renaming the
discriminator to something more applicable than the simple union's
default of 'type', and reducing the number of {} required on the wire:

 { 'enum': 'BlockdevDriver', 'data': [ 'file', 'qcow2' ] }
 { 'union': 'BlockdevOptions',
   'base': { 'driver': 'BlockdevDriver', '*read-only': 'bool' },
   'discriminator': 'driver',
   'data': { 'file': 'BlockdevOptionsFile',
             'qcow2': 'BlockdevOptionsQcow2' } }

Resulting in these JSON objects:

 { "driver": "file", "read-only": true,
   "filename": "/some/place/my-image" }
 { "driver": "qcow2", "read-only": false,
   "backing": "/some/place/my-image", "lazy-refcounts": true }

Notice that in a flat union, the discriminator name is controlled by
the user, but because it must map to a base member with enum type, the
code generator ensures that branches match the existing values of the
enum. The order of the keys need not match the declaration of the enum.
The keys need not cover all possible enum values. Omitted enum values
are still valid branches that add no additional members to the data type.
In the resulting generated C data types, a flat union is
represented as a struct with the base members included directly, and
then a union of structures for each branch of the struct.

A simple union can always be re-written as a flat union where the base
class has a single member named 'type', and where each branch of the
union has a struct with a single member named 'data'.  That is,

 { 'union': 'Simple', 'data': { 'one': 'str', 'two': 'int' } }

is identical on the wire to:

 { 'enum': 'Enum', 'data': ['one', 'two'] }
 { 'struct': 'Branch1', 'data': { 'data': 'str' } }
 { 'struct': 'Branch2', 'data': { 'data': 'int' } }
 { 'union': 'Flat': 'base': { 'type': 'Enum' }, 'discriminator': 'type',
   'data': { 'one': 'Branch1', 'two': 'Branch2' } }


=== Alternate types ===

Usage: { 'alternate': STRING, 'data': DICT }

An alternate type is one that allows a choice between two or more JSON
data types (string, integer, number, or object, but currently not
array) on the wire.  The definition is similar to a simple union type,
where each branch of the union names a QAPI type.  For example:

 { 'alternate': 'BlockdevRef',
   'data': { 'definition': 'BlockdevOptions',
             'reference': 'str' } }

Unlike a union, the discriminator string is never passed on the wire
for the Client JSON Protocol.  Instead, the value's JSON type serves
as an implicit discriminator, which in turn means that an alternate
can only express a choice between types represented differently in
JSON.  If a branch is typed as the 'bool' built-in, the alternate
accepts true and false; if it is typed as any of the various numeric
built-ins, it accepts a JSON number; if it is typed as a 'str'
built-in or named enum type, it accepts a JSON string; if it is typed
as the 'null' built-in, it accepts JSON null; and if it is typed as a
complex type (struct or union), it accepts a JSON object.  Two
different complex types, for instance, aren't permitted, because both
are represented as a JSON object.

The example alternate declaration above allows using both of the
following example objects:

 { "file": "my_existing_block_device_id" }
 { "file": { "driver": "file",
             "read-only": false,
             "filename": "/tmp/mydisk.qcow2" } }


=== Commands ===

--- General Command Layout ---

Usage: { 'command': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT,
         '*returns': TYPE-NAME, '*boxed': true,
         '*gen': false, '*success-response': false,
         '*allow-oob': true, '*allow-preconfig': true }

Commands are defined by using a dictionary containing several members,
where three members are most common.  The 'command' member is a
mandatory string, and determines the "execute" value passed in a
Client JSON Protocol command exchange.

The 'data' argument maps to the "arguments" dictionary passed in as
part of a Client JSON Protocol command.  The 'data' member is optional
and defaults to {} (an empty dictionary).  If present, it must be the
string name of a complex type, or a dictionary that declares an
anonymous type with the same semantics as a 'struct' expression.

The 'returns' member describes what will appear in the "return" member
of a Client JSON Protocol reply on successful completion of a command.
The member is optional from the command declaration; if absent, the
"return" member will be an empty dictionary.  If 'returns' is present,
it must be the string name of a complex or built-in type, a
one-element array containing the name of a complex or built-in type.
To return anything else, you have to list the command in pragma
'returns-whitelist'.  If you do this, the command cannot be extended
to return additional information in the future.  Use of
'returns-whitelist' for new commands is strongly discouraged.

All commands in Client JSON Protocol use a dictionary to report
failure, with no way to specify that in QAPI.  Where the error return
is different than the usual GenericError class in order to help the
client react differently to certain error conditions, it is worth
documenting this in the comments before the command declaration.

Some example commands:

 { 'command': 'my-first-command',
   'data': { 'arg1': 'str', '*arg2': 'str' } }
 { 'struct': 'MyType', 'data': { '*value': 'str' } }
 { 'command': 'my-second-command',
   'returns': [ 'MyType' ] }

which would validate this Client JSON Protocol transaction:

 => { "execute": "my-first-command",
      "arguments": { "arg1": "hello" } }
 <= { "return": { } }
 => { "execute": "my-second-command" }
 <= { "return": [ { "value": "one" }, { } ] }

The generator emits a prototype for the user's function implementing
the command.  Normally, 'data' is a dictionary for an anonymous type,
or names a struct type (possibly empty, but not a union), and its
members are passed as separate arguments to this function.  If the
command definition includes a key 'boxed' with the boolean value true,
then 'data' is instead the name of any non-empty complex type
(struct, union, or alternate), and a pointer to that QAPI type is
passed as a single argument.

The generator also emits a marshalling function that extracts
arguments for the user's function out of an input QDict, calls the
user's function, and if it succeeded, builds an output QObject from
its return value.

In rare cases, QAPI cannot express a type-safe representation of a
corresponding Client JSON Protocol command.  You then have to suppress
generation of a marshalling function by including a key 'gen' with
boolean value false, and instead write your own function.  For
example:

 { 'command': 'netdev_add',
   'data': {'type': 'str', 'id': 'str'},
   'gen': false }

Please try to avoid adding new commands that rely on this, and instead
use type-safe unions.

Normally, the QAPI schema is used to describe synchronous exchanges,
where a response is expected.  But in some cases, the action of a
command is expected to change state in a way that a successful
response is not possible (although the command will still return a
normal dictionary error on failure).  When a successful reply is not
possible, the command expression includes the optional key
'success-response' with boolean value false.  So far, only QGA makes
use of this member.

Key 'allow-oob' declares whether the command supports out-of-band
(OOB) execution.  It defaults to false.  For example:

 { 'command': 'migrate_recover',
   'data': { 'uri': 'str' }, 'allow-oob': true }

See qmp-spec.txt for out-of-band execution syntax and semantics.

Commands supporting out-of-band execution can still be executed
in-band.

When a command is executed in-band, its handler runs in the main
thread with the BQL held.

When a command is executed out-of-band, its handler runs in a
dedicated monitor I/O thread with the BQL *not* held.

An OOB-capable command handler must satisfy the following conditions:

- It terminates quickly.
- It does not invoke system calls that may block.
- It does not access guest RAM that may block when userfaultfd is
  enabled for postcopy live migration.
- It takes only "fast" locks, i.e. all critical sections protected by
  any lock it takes also satisfy the conditions for OOB command
  handler code.

The restrictions on locking limit access to shared state.  Such access
requires synchronization, but OOB commands can't take the BQL or any
other "slow" lock.

When in doubt, do not implement OOB execution support.

Key 'allow-preconfig' declares whether the command is available before
the machine is built.  It defaults to false.  For example:

 { 'command': 'qmp_capabilities',
   'data': { '*enable': [ 'QMPCapability' ] },
   'allow-preconfig': true }

QMP is available before the machine is built only when QEMU was
started with --preconfig.

=== Events ===

Usage: { 'event': STRING, '*data': COMPLEX-TYPE-NAME-OR-DICT,
         '*boxed': true }

Events are defined with the keyword 'event'.  It is not allowed to
name an event 'MAX', since the generator also produces a C enumeration
of all event names with a generated _MAX value at the end.  When
'data' is also specified, additional info will be included in the
event, with similar semantics to a 'struct' expression.  Finally there
will be C API generated in qapi-events.h; when called by QEMU code, a
message with timestamp will be emitted on the wire.

An example event is:

{ 'event': 'EVENT_C',
  'data': { '*a': 'int', 'b': 'str' } }

Resulting in this JSON object:

{ "event": "EVENT_C",
  "data": { "b": "test string" },
  "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }

The generator emits a function to send the event.  Normally, 'data' is
a dictionary for an anonymous type, or names a struct type (possibly
empty, but not a union), and its members are passed as separate
arguments to this function.  If the event definition includes a key
'boxed' with the boolean value true, then 'data' is instead the name of
any non-empty complex type (struct, union, or alternate), and a
pointer to that QAPI type is passed as a single argument.


=== Downstream extensions ===

QAPI schema names that are externally visible, say in the Client JSON
Protocol, need to be managed with care.  Names starting with a
downstream prefix of the form __RFQDN_ are reserved for the downstream
who controls the valid, reverse fully qualified domain name RFQDN.
RFQDN may only contain ASCII letters, digits, hyphen and period.

Example: Red Hat, Inc. controls redhat.com, and may therefore add a
downstream command __com.redhat_drive-mirror.


=== Configuring the schema ===

The 'struct', 'enum', 'union', 'alternate', 'command' and 'event'
top-level expressions can take an 'if' key.  Its value must be a string
or a list of strings.  A string is shorthand for a list containing just
that string.  The code generated for the top-level expression will then
be guarded by #if COND for each COND in the list.

Example: a conditional struct

 { 'struct': 'IfStruct', 'data': { 'foo': 'int' },
   'if': ['defined(CONFIG_FOO)', 'defined(HAVE_BAR)'] }

gets its generated code guarded like this:

 #if defined(CONFIG_FOO)
 #if defined(HAVE_BAR)
 ... generated code ...
 #endif /* defined(HAVE_BAR) */
 #endif /* defined(CONFIG_FOO) */

Where a member can be defined with a single string value for its type,
it is also possible to supply a dictionary instead with both 'type'
and 'if' keys.

Example: a conditional 'bar' member

{ 'struct': 'IfStruct', 'data':
  { 'foo': 'int',
    'bar': { 'type': 'int', 'if': 'defined(IFCOND)'} } }

An enum value can be replaced by a dictionary with a 'name' and a 'if'
key.

Example: a conditional 'bar' enum member.

{ 'enum': 'IfEnum', 'data':
  [ 'foo',
    { 'name' : 'bar', 'if': 'defined(IFCOND)' } ] }

Please note that you are responsible to ensure that the C code will
compile with an arbitrary combination of conditions, since the
generators are unable to check it at this point.

The presence of 'if' keys in the schema is reflected through to the
introspection output depending on the build configuration.


== Client JSON Protocol introspection ==

Clients of a Client JSON Protocol commonly need to figure out what
exactly the server (QEMU) supports.

For this purpose, QMP provides introspection via command
query-qmp-schema.  QGA currently doesn't support introspection.

While Client JSON Protocol wire compatibility should be maintained
between qemu versions, we cannot make the same guarantees for
introspection stability.  For example, one version of qemu may provide
a non-variant optional member of a struct, and a later version rework
the member to instead be non-optional and associated with a variant.
Likewise, one version of qemu may list a member with open-ended type
'str', and a later version could convert it to a finite set of strings
via an enum type; or a member may be converted from a specific type to
an alternate that represents a choice between the original type and
something else.

query-qmp-schema returns a JSON array of SchemaInfo objects.  These
objects together describe the wire ABI, as defined in the QAPI schema.
There is no specified order to the SchemaInfo objects returned; a
client must search for a particular name throughout the entire array
to learn more about that name, but is at least guaranteed that there
will be no collisions between type, command, and event names.

However, the SchemaInfo can't reflect all the rules and restrictions
that apply to QMP.  It's interface introspection (figuring out what's
there), not interface specification.  The specification is in the QAPI
schema.  To understand how QMP is to be used, you need to study the
QAPI schema.

Like any other command, query-qmp-schema is itself defined in the QAPI
schema, along with the SchemaInfo type.  This text attempts to give an
overview how things work.  For details you need to consult the QAPI
schema.

SchemaInfo objects have common members "name" and "meta-type", and
additional variant members depending on the value of meta-type.

Each SchemaInfo object describes a wire ABI entity of a certain
meta-type: a command, event or one of several kinds of type.

SchemaInfo for commands and events have the same name as in the QAPI
schema.

Command and event names are part of the wire ABI, but type names are
not.  Therefore, the SchemaInfo for types have auto-generated
meaningless names.  For readability, the examples in this section use
meaningful type names instead.

To examine a type, start with a command or event using it, then follow
references by name.

QAPI schema definitions not reachable that way are omitted.

The SchemaInfo for a command has meta-type "command", and variant
members "arg-type", "ret-type" and "allow-oob".  On the wire, the
"arguments" member of a client's "execute" command must conform to the
object type named by "arg-type".  The "return" member that the server
passes in a success response conforms to the type named by
"ret-type".  When "allow-oob" is set, it means the command supports
out-of-band execution.

If the command takes no arguments, "arg-type" names an object type
without members.  Likewise, if the command returns nothing, "ret-type"
names an object type without members.

Example: the SchemaInfo for command query-qmp-schema

    { "name": "query-qmp-schema", "meta-type": "command",
      "arg-type": "q_empty", "ret-type": "SchemaInfoList" }

    Type "q_empty" is an automatic object type without members, and type
    "SchemaInfoList" is the array of SchemaInfo type.

The SchemaInfo for an event has meta-type "event", and variant member
"arg-type".  On the wire, a "data" member that the server passes in an
event conforms to the object type named by "arg-type".

If the event carries no additional information, "arg-type" names an
object type without members.  The event may not have a data member on
the wire then.

Each command or event defined with dictionary-valued 'data' in the
QAPI schema implicitly defines an object type.

Example: the SchemaInfo for EVENT_C from section Events

    { "name": "EVENT_C", "meta-type": "event",
      "arg-type": "q_obj-EVENT_C-arg" }

    Type "q_obj-EVENT_C-arg" is an implicitly defined object type with
    the two members from the event's definition.

The SchemaInfo for struct and union types has meta-type "object".

The SchemaInfo for a struct type has variant member "members".

The SchemaInfo for a union type additionally has variant members "tag"
and "variants".

"members" is a JSON array describing the object's common members, if
any.  Each element is a JSON object with members "name" (the member's
name), "type" (the name of its type), and optionally "default".  The
member is optional if "default" is present.  Currently, "default" can
only have value null.  Other values are reserved for future
extensions.  The "members" array is in no particular order; clients
must search the entire object when learning whether a particular
member is supported.

Example: the SchemaInfo for MyType from section Struct types

    { "name": "MyType", "meta-type": "object",
      "members": [
          { "name": "member1", "type": "str" },
          { "name": "member2", "type": "int" },
          { "name": "member3", "type": "str", "default": null } ] }

"tag" is the name of the common member serving as type tag.
"variants" is a JSON array describing the object's variant members.
Each element is a JSON object with members "case" (the value of type
tag this element applies to) and "type" (the name of an object type
that provides the variant members for this type tag value).  The
"variants" array is in no particular order, and is not guaranteed to
list cases in the same order as the corresponding "tag" enum type.

Example: the SchemaInfo for flat union BlockdevOptions from section
Union types

    { "name": "BlockdevOptions", "meta-type": "object",
      "members": [
          { "name": "driver", "type": "BlockdevDriver" },
          { "name": "read-only", "type": "bool", "default": null } ],
      "tag": "driver",
      "variants": [
          { "case": "file", "type": "BlockdevOptionsFile" },
          { "case": "qcow2", "type": "BlockdevOptionsQcow2" } ] }

Note that base types are "flattened": its members are included in the
"members" array.

A simple union implicitly defines an enumeration type for its implicit
discriminator (called "type" on the wire, see section Union types).

A simple union implicitly defines an object type for each of its
variants.

Example: the SchemaInfo for simple union BlockdevOptionsSimple from section
Union types

    { "name": "BlockdevOptionsSimple", "meta-type": "object",
      "members": [
          { "name": "type", "type": "BlockdevOptionsSimpleKind" } ],
      "tag": "type",
      "variants": [
          { "case": "file", "type": "q_obj-BlockdevOptionsFile-wrapper" },
          { "case": "qcow2", "type": "q_obj-BlockdevOptionsQcow2-wrapper" } ] }

    Enumeration type "BlockdevOptionsSimpleKind" and the object types
    "q_obj-BlockdevOptionsFile-wrapper", "q_obj-BlockdevOptionsQcow2-wrapper"
    are implicitly defined.

The SchemaInfo for an alternate type has meta-type "alternate", and
variant member "members".  "members" is a JSON array.  Each element is
a JSON object with member "type", which names a type.  Values of the
alternate type conform to exactly one of its member types.  There is
no guarantee on the order in which "members" will be listed.

Example: the SchemaInfo for BlockdevRef from section Alternate types

    { "name": "BlockdevRef", "meta-type": "alternate",
      "members": [
          { "type": "BlockdevOptions" },
          { "type": "str" } ] }

The SchemaInfo for an array type has meta-type "array", and variant
member "element-type", which names the array's element type.  Array
types are implicitly defined.  For convenience, the array's name may
resemble the element type; however, clients should examine member
"element-type" instead of making assumptions based on parsing member
"name".

Example: the SchemaInfo for ['str']

    { "name": "[str]", "meta-type": "array",
      "element-type": "str" }

The SchemaInfo for an enumeration type has meta-type "enum" and
variant member "values".  The values are listed in no particular
order; clients must search the entire enum when learning whether a
particular value is supported.

Example: the SchemaInfo for MyEnum from section Enumeration types

    { "name": "MyEnum", "meta-type": "enum",
      "values": [ "value1", "value2", "value3" ] }

The SchemaInfo for a built-in type has the same name as the type in
the QAPI schema (see section Built-in Types), with one exception
detailed below.  It has variant member "json-type" that shows how
values of this type are encoded on the wire.

Example: the SchemaInfo for str

    { "name": "str", "meta-type": "builtin", "json-type": "string" }

The QAPI schema supports a number of integer types that only differ in
how they map to C.  They are identical as far as SchemaInfo is
concerned.  Therefore, they get all mapped to a single type "int" in
SchemaInfo.

As explained above, type names are not part of the wire ABI.  Not even
the names of built-in types.  Clients should examine member
"json-type" instead of hard-coding names of built-in types.


== Code generation ==

The QAPI code generator qapi-gen.py generates code and documentation
from the schema.  Together with the core QAPI libraries, this code
provides everything required to take JSON commands read in by a Client
JSON Protocol server, unmarshal the arguments into the underlying C
types, call into the corresponding C function, map the response back
to a Client JSON Protocol response to be returned to the user, and
introspect the commands.

As an example, we'll use the following schema, which describes a
single complex user-defined type, along with command which takes a
list of that type as a parameter, and returns a single element of that
type.  The user is responsible for writing the implementation of
qmp_my_command(); everything else is produced by the generator.

    $ cat example-schema.json
    { 'struct': 'UserDefOne',
      'data': { 'integer': 'int', '*string': 'str' } }

    { 'command': 'my-command',
      'data': { 'arg1': ['UserDefOne'] },
      'returns': 'UserDefOne' }

    { 'event': 'MY_EVENT' }

We run qapi-gen.py like this:

    $ python scripts/qapi-gen.py --output-dir="qapi-generated" \
    --prefix="example-" example-schema.json

For a more thorough look at generated code, the testsuite includes
tests/qapi-schema/qapi-schema-tests.json that covers more examples of
what the generator will accept, and compiles the resulting C code as
part of 'make check-unit'.

=== Code generated for QAPI types ===

The following files are created:

$(prefix)qapi-types.h - C types corresponding to types defined in
                        the schema

$(prefix)qapi-types.c - Cleanup functions for the above C types

The $(prefix) is an optional parameter used as a namespace to keep the
generated code from one schema/code-generation separated from others so code
can be generated/used from multiple schemas without clobbering previously
created code.

Example:

    $ cat qapi-generated/example-qapi-types.h
[Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_TYPES_H
    #define EXAMPLE_QAPI_TYPES_H

    #include "qapi/qapi-builtin-types.h"

    typedef struct UserDefOne UserDefOne;

    typedef struct UserDefOneList UserDefOneList;

    typedef struct q_obj_my_command_arg q_obj_my_command_arg;

    struct UserDefOne {
        int64_t integer;
        bool has_string;
        char *string;
    };

    void qapi_free_UserDefOne(UserDefOne *obj);

    struct UserDefOneList {
        UserDefOneList *next;
        UserDefOne *value;
    };

    void qapi_free_UserDefOneList(UserDefOneList *obj);

    struct q_obj_my_command_arg {
        UserDefOneList *arg1;
    };

    #endif /* EXAMPLE_QAPI_TYPES_H */
    $ cat qapi-generated/example-qapi-types.c
[Uninteresting stuff omitted...]

    void qapi_free_UserDefOne(UserDefOne *obj)
    {
        Visitor *v;

        if (!obj) {
            return;
        }

        v = qapi_dealloc_visitor_new();
        visit_type_UserDefOne(v, NULL, &obj, NULL);
        visit_free(v);
    }

    void qapi_free_UserDefOneList(UserDefOneList *obj)
    {
        Visitor *v;

        if (!obj) {
            return;
        }

        v = qapi_dealloc_visitor_new();
        visit_type_UserDefOneList(v, NULL, &obj, NULL);
        visit_free(v);
    }

[Uninteresting stuff omitted...]

For a modular QAPI schema (see section Include directives), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into

SUBDIR/$(prefix)qapi-types-SUBMODULE.h
SUBDIR/$(prefix)qapi-types-SUBMODULE.c

If qapi-gen.py is run with option --builtins, additional files are
created:

qapi-builtin-types.h - C types corresponding to built-in types

qapi-builtin-types.c - Cleanup functions for the above C types

=== Code generated for visiting QAPI types ===

These are the visitor functions used to walk through and convert
between a native QAPI C data structure and some other format (such as
QObject); the generated functions are named visit_type_FOO() and
visit_type_FOO_members().

The following files are generated:

$(prefix)qapi-visit.c: Visitor function for a particular C type, used
                       to automagically convert QObjects into the
                       corresponding C type and vice-versa, as well
                       as for deallocating memory for an existing C
                       type

$(prefix)qapi-visit.h: Declarations for previously mentioned visitor
                       functions

Example:

    $ cat qapi-generated/example-qapi-visit.h
[Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_VISIT_H
    #define EXAMPLE_QAPI_VISIT_H

    #include "qapi/qapi-builtin-visit.h"
    #include "example-qapi-types.h"


    void visit_type_UserDefOne_members(Visitor *v, UserDefOne *obj, Error **errp);
    void visit_type_UserDefOne(Visitor *v, const char *name, UserDefOne **obj, Error **errp);
    void visit_type_UserDefOneList(Visitor *v, const char *name, UserDefOneList **obj, Error **errp);

    void visit_type_q_obj_my_command_arg_members(Visitor *v, q_obj_my_command_arg *obj, Error **errp);

    #endif /* EXAMPLE_QAPI_VISIT_H */
    $ cat qapi-generated/example-qapi-visit.c
[Uninteresting stuff omitted...]

    void visit_type_UserDefOne_members(Visitor *v, UserDefOne *obj, Error **errp)
    {
        Error *err = NULL;

        visit_type_int(v, "integer", &obj->integer, &err);
        if (err) {
            goto out;
        }
        if (visit_optional(v, "string", &obj->has_string)) {
            visit_type_str(v, "string", &obj->string, &err);
            if (err) {
                goto out;
            }
        }

    out:
        error_propagate(errp, err);
    }

    void visit_type_UserDefOne(Visitor *v, const char *name, UserDefOne **obj, Error **errp)
    {
        Error *err = NULL;

        visit_start_struct(v, name, (void **)obj, sizeof(UserDefOne), &err);
        if (err) {
            goto out;
        }
        if (!*obj) {
            goto out_obj;
        }
        visit_type_UserDefOne_members(v, *obj, &err);
        if (err) {
            goto out_obj;
        }
        visit_check_struct(v, &err);
    out_obj:
        visit_end_struct(v, (void **)obj);
        if (err && visit_is_input(v)) {
            qapi_free_UserDefOne(*obj);
            *obj = NULL;
        }
    out:
        error_propagate(errp, err);
    }

    void visit_type_UserDefOneList(Visitor *v, const char *name, UserDefOneList **obj, Error **errp)
    {
        Error *err = NULL;
        UserDefOneList *tail;
        size_t size = sizeof(**obj);

        visit_start_list(v, name, (GenericList **)obj, size, &err);
        if (err) {
            goto out;
        }

        for (tail = *obj; tail;
             tail = (UserDefOneList *)visit_next_list(v, (GenericList *)tail, size)) {
            visit_type_UserDefOne(v, NULL, &tail->value, &err);
            if (err) {
                break;
            }
        }

        if (!err) {
            visit_check_list(v, &err);
        }
        visit_end_list(v, (void **)obj);
        if (err && visit_is_input(v)) {
            qapi_free_UserDefOneList(*obj);
            *obj = NULL;
        }
    out:
        error_propagate(errp, err);
    }

    void visit_type_q_obj_my_command_arg_members(Visitor *v, q_obj_my_command_arg *obj, Error **errp)
    {
        Error *err = NULL;

        visit_type_UserDefOneList(v, "arg1", &obj->arg1, &err);
        if (err) {
            goto out;
        }

    out:
        error_propagate(errp, err);
    }

[Uninteresting stuff omitted...]

For a modular QAPI schema (see section Include directives), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into

SUBDIR/$(prefix)qapi-visit-SUBMODULE.h
SUBDIR/$(prefix)qapi-visit-SUBMODULE.c

If qapi-gen.py is run with option --builtins, additional files are
created:

qapi-builtin-visit.h - Visitor functions for built-in types

qapi-builtin-visit.c - Declarations for these visitor functions

=== Code generated for commands ===

These are the marshaling/dispatch functions for the commands defined
in the schema.  The generated code provides qmp_marshal_COMMAND(), and
declares qmp_COMMAND() that the user must implement.

The following files are generated:

$(prefix)qapi-commands.c: Command marshal/dispatch functions for each
                          QMP command defined in the schema

$(prefix)qapi-commands.h: Function prototypes for the QMP commands
                          specified in the schema

Example:

    $ cat qapi-generated/example-qapi-commands.h
[Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_COMMANDS_H
    #define EXAMPLE_QAPI_COMMANDS_H

    #include "example-qapi-types.h"
    #include "qapi/qmp/dispatch.h"

    UserDefOne *qmp_my_command(UserDefOneList *arg1, Error **errp);
    void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp);
    void example_qmp_init_marshal(QmpCommandList *cmds);

    #endif /* EXAMPLE_QAPI_COMMANDS_H */
    $ cat qapi-generated/example-qapi-commands.c
[Uninteresting stuff omitted...]

    static void qmp_marshal_output_UserDefOne(UserDefOne *ret_in, QObject **ret_out, Error **errp)
    {
        Error *err = NULL;
        Visitor *v;

        v = qobject_output_visitor_new(ret_out);
        visit_type_UserDefOne(v, "unused", &ret_in, &err);
        if (!err) {
            visit_complete(v, ret_out);
        }
        error_propagate(errp, err);
        visit_free(v);
        v = qapi_dealloc_visitor_new();
        visit_type_UserDefOne(v, "unused", &ret_in, NULL);
        visit_free(v);
    }

    void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp)
    {
        Error *err = NULL;
        UserDefOne *retval;
        Visitor *v;
        q_obj_my_command_arg arg = {0};

        v = qobject_input_visitor_new(QOBJECT(args));
        visit_start_struct(v, NULL, NULL, 0, &err);
        if (err) {
            goto out;
        }
        visit_type_q_obj_my_command_arg_members(v, &arg, &err);
        if (!err) {
            visit_check_struct(v, &err);
        }
        visit_end_struct(v, NULL);
        if (err) {
            goto out;
        }

        retval = qmp_my_command(arg.arg1, &err);
        if (err) {
            goto out;
        }

        qmp_marshal_output_UserDefOne(retval, ret, &err);

    out:
        error_propagate(errp, err);
        visit_free(v);
        v = qapi_dealloc_visitor_new();
        visit_start_struct(v, NULL, NULL, 0, NULL);
        visit_type_q_obj_my_command_arg_members(v, &arg, NULL);
        visit_end_struct(v, NULL);
        visit_free(v);
    }

    void example_qmp_init_marshal(QmpCommandList *cmds)
    {
        QTAILQ_INIT(cmds);

        qmp_register_command(cmds, "my-command",
                             qmp_marshal_my_command, QCO_NO_OPTIONS);
    }

[Uninteresting stuff omitted...]

For a modular QAPI schema (see section Include directives), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into

SUBDIR/$(prefix)qapi-commands-SUBMODULE.h
SUBDIR/$(prefix)qapi-commands-SUBMODULE.c

=== Code generated for events ===

This is the code related to events defined in the schema, providing
qapi_event_send_EVENT().

The following files are created:

$(prefix)qapi-events.h - Function prototypes for each event type, plus an
                        enumeration of all event names

$(prefix)qapi-events.c - Implementation of functions to send an event

Example:

    $ cat qapi-generated/example-qapi-events.h
[Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_EVENTS_H
    #define EXAMPLE_QAPI_EVENTS_H

    #include "qapi/util.h"
    #include "example-qapi-types.h"


    void qapi_event_send_my_event(void);

    typedef enum example_QAPIEvent {
        EXAMPLE_QAPI_EVENT_MY_EVENT,
        EXAMPLE_QAPI_EVENT__MAX,
    } example_QAPIEvent;

    #define example_QAPIEvent_str(val) \
        qapi_enum_lookup(&example_QAPIEvent_lookup, (val))

    extern const QEnumLookup example_QAPIEvent_lookup;

    void example_qapi_event_emit(example_QAPIEvent event, QDict *qdict);

    #endif /* EXAMPLE_QAPI_EVENTS_H */
    $ cat qapi-generated/example-qapi-events.c
[Uninteresting stuff omitted...]

    void qapi_event_send_my_event(void)
    {
        QDict *qmp;

        qmp = qmp_event_build_dict("MY_EVENT");

        example_qapi_event_emit(EXAMPLE_QAPI_EVENT_MY_EVENT, qmp);

        qobject_unref(qmp);
    }

    const QEnumLookup example_QAPIEvent_lookup = {
        .array = (const char *const[]) {
            [EXAMPLE_QAPI_EVENT_MY_EVENT] = "MY_EVENT",
        },
        .size = EXAMPLE_QAPI_EVENT__MAX
    };

[Uninteresting stuff omitted...]

For a modular QAPI schema (see section Include directives), code for
each sub-module SUBDIR/SUBMODULE.json is actually generated into

SUBDIR/$(prefix)qapi-events-SUBMODULE.h
SUBDIR/$(prefix)qapi-events-SUBMODULE.c

=== Code generated for introspection ===

The following files are created:

$(prefix)qapi-introspect.c - Defines a string holding a JSON
                            description of the schema

$(prefix)qapi-introspect.h - Declares the above string

Example:

    $ cat qapi-generated/example-qapi-introspect.h
[Uninteresting stuff omitted...]

    #ifndef EXAMPLE_QAPI_INTROSPECT_H
    #define EXAMPLE_QAPI_INTROSPECT_H

    #include "qapi/qmp/qlit.h"

    extern const QLitObject example_qmp_schema_qlit;

    #endif /* EXAMPLE_QAPI_INTROSPECT_H */
    $ cat qapi-generated/example-qapi-introspect.c
[Uninteresting stuff omitted...]

    const QLitObject example_qmp_schema_qlit = QLIT_QLIST(((QLitObject[]) {
        QLIT_QDICT(((QLitDictEntry[]) {
            { "arg-type", QLIT_QSTR("0"), },
            { "meta-type", QLIT_QSTR("command"), },
            { "name", QLIT_QSTR("my-command"), },
            { "ret-type", QLIT_QSTR("1"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "arg-type", QLIT_QSTR("2"), },
            { "meta-type", QLIT_QSTR("event"), },
            { "name", QLIT_QSTR("MY_EVENT"), },
            {}
        })),
        /* "0" = q_obj_my-command-arg */
        QLIT_QDICT(((QLitDictEntry[]) {
            { "members", QLIT_QLIST(((QLitObject[]) {
                QLIT_QDICT(((QLitDictEntry[]) {
                    { "name", QLIT_QSTR("arg1"), },
                    { "type", QLIT_QSTR("[1]"), },
                    {}
                })),
                {}
            })), },
            { "meta-type", QLIT_QSTR("object"), },
            { "name", QLIT_QSTR("0"), },
            {}
        })),
        /* "1" = UserDefOne */
        QLIT_QDICT(((QLitDictEntry[]) {
            { "members", QLIT_QLIST(((QLitObject[]) {
                QLIT_QDICT(((QLitDictEntry[]) {
                    { "name", QLIT_QSTR("integer"), },
                    { "type", QLIT_QSTR("int"), },
                    {}
                })),
                QLIT_QDICT(((QLitDictEntry[]) {
                    { "default", QLIT_QNULL, },
                    { "name", QLIT_QSTR("string"), },
                    { "type", QLIT_QSTR("str"), },
                    {}
                })),
                {}
            })), },
            { "meta-type", QLIT_QSTR("object"), },
            { "name", QLIT_QSTR("1"), },
            {}
        })),
        /* "2" = q_empty */
        QLIT_QDICT(((QLitDictEntry[]) {
            { "members", QLIT_QLIST(((QLitObject[]) {
                {}
            })), },
            { "meta-type", QLIT_QSTR("object"), },
            { "name", QLIT_QSTR("2"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "element-type", QLIT_QSTR("1"), },
            { "meta-type", QLIT_QSTR("array"), },
            { "name", QLIT_QSTR("[1]"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "json-type", QLIT_QSTR("int"), },
            { "meta-type", QLIT_QSTR("builtin"), },
            { "name", QLIT_QSTR("int"), },
            {}
        })),
        QLIT_QDICT(((QLitDictEntry[]) {
            { "json-type", QLIT_QSTR("string"), },
            { "meta-type", QLIT_QSTR("builtin"), },
            { "name", QLIT_QSTR("str"), },
            {}
        })),
        {}
    }));

[Uninteresting stuff omitted...]