aboutsummaryrefslogtreecommitdiff
path: root/disas/libvixl/a64/instructions-a64.cc
blob: b0918868386c0461e70282863c511354cd356947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "a64/instructions-a64.h"
#include "a64/assembler-a64.h"

namespace vixl {


// Floating-point infinity values.
const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
const double kFP64PositiveInfinity =
    rawbits_to_double(UINT64_C(0x7ff0000000000000));
const double kFP64NegativeInfinity =
    rawbits_to_double(UINT64_C(0xfff0000000000000));


// The default NaN values (for FPCR.DN=1).
const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);


static uint64_t RotateRight(uint64_t value,
                            unsigned int rotate,
                            unsigned int width) {
  VIXL_ASSERT(width <= 64);
  rotate &= 63;
  return ((value & ((UINT64_C(1) << rotate) - 1)) <<
          (width - rotate)) | (value >> rotate);
}


static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
                                    uint64_t value,
                                    unsigned width) {
  VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
              (width == 32));
  VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
  uint64_t result = value & ((UINT64_C(1) << width) - 1);
  for (unsigned i = width; i < reg_size; i *= 2) {
    result |= (result << i);
  }
  return result;
}


bool Instruction::IsLoad() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) != 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
    switch (op) {
      case LDRB_w:
      case LDRH_w:
      case LDR_w:
      case LDR_x:
      case LDRSB_w:
      case LDRSB_x:
      case LDRSH_w:
      case LDRSH_x:
      case LDRSW_x:
      case LDR_s:
      case LDR_d: return true;
      default: return false;
    }
  }
}


bool Instruction::IsStore() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) == 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
    switch (op) {
      case STRB_w:
      case STRH_w:
      case STR_w:
      case STR_x:
      case STR_s:
      case STR_d: return true;
      default: return false;
    }
  }
}


// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
uint64_t Instruction::ImmLogical() const {
  unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
  int64_t n = BitN();
  int64_t imm_s = ImmSetBits();
  int64_t imm_r = ImmRotate();

  // An integer is constructed from the n, imm_s and imm_r bits according to
  // the following table:
  //
  //  N   imms    immr    size        S             R
  //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
  //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
  //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
  //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
  //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
  //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
  // (s bits must not be all set)
  //
  // A pattern is constructed of size bits, where the least significant S+1
  // bits are set. The pattern is rotated right by R, and repeated across a
  // 32 or 64-bit value, depending on destination register width.
  //

  if (n == 1) {
    if (imm_s == 0x3F) {
      return 0;
    }
    uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
    return RotateRight(bits, imm_r, 64);
  } else {
    if ((imm_s >> 1) == 0x1F) {
      return 0;
    }
    for (int width = 0x20; width >= 0x2; width >>= 1) {
      if ((imm_s & width) == 0) {
        int mask = width - 1;
        if ((imm_s & mask) == mask) {
          return 0;
        }
        uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
        return RepeatBitsAcrossReg(reg_size,
                                   RotateRight(bits, imm_r & mask, width),
                                   width);
      }
    }
  }
  VIXL_UNREACHABLE();
  return 0;
}


float Instruction::ImmFP32() const {
  //  ImmFP: abcdefgh (8 bits)
  // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
  // where B is b ^ 1
  uint32_t bits = ImmFP();
  uint32_t bit7 = (bits >> 7) & 0x1;
  uint32_t bit6 = (bits >> 6) & 0x1;
  uint32_t bit5_to_0 = bits & 0x3f;
  uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);

  return rawbits_to_float(result);
}


double Instruction::ImmFP64() const {
  //  ImmFP: abcdefgh (8 bits)
  // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
  //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
  // where B is b ^ 1
  uint32_t bits = ImmFP();
  uint64_t bit7 = (bits >> 7) & 0x1;
  uint64_t bit6 = (bits >> 6) & 0x1;
  uint64_t bit5_to_0 = bits & 0x3f;
  uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);

  return rawbits_to_double(result);
}


LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
  switch (op) {
    case STP_x:
    case LDP_x:
    case STP_d:
    case LDP_d: return LSDoubleWord;
    default: return LSWord;
  }
}


const Instruction* Instruction::ImmPCOffsetTarget() const {
  const Instruction * base = this;
  ptrdiff_t offset;
  if (IsPCRelAddressing()) {
    // ADR and ADRP.
    offset = ImmPCRel();
    if (Mask(PCRelAddressingMask) == ADRP) {
      base = AlignDown(base, kPageSize);
      offset *= kPageSize;
    } else {
      VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
    }
  } else {
    // All PC-relative branches.
    VIXL_ASSERT(BranchType() != UnknownBranchType);
    // Relative branch offsets are instruction-size-aligned.
    offset = ImmBranch() << kInstructionSizeLog2;
  }
  return base + offset;
}


inline int Instruction::ImmBranch() const {
  switch (BranchType()) {
    case CondBranchType: return ImmCondBranch();
    case UncondBranchType: return ImmUncondBranch();
    case CompareBranchType: return ImmCmpBranch();
    case TestBranchType: return ImmTestBranch();
    default: VIXL_UNREACHABLE();
  }
  return 0;
}


void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
  if (IsPCRelAddressing()) {
    SetPCRelImmTarget(target);
  } else {
    SetBranchImmTarget(target);
  }
}


void Instruction::SetPCRelImmTarget(const Instruction* target) {
  int32_t imm21;
  if ((Mask(PCRelAddressingMask) == ADR)) {
    imm21 = target - this;
  } else {
    VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
    uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
    uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
    imm21 = target_page - this_page;
  }
  Instr imm = Assembler::ImmPCRelAddress(imm21);

  SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
}


void Instruction::SetBranchImmTarget(const Instruction* target) {
  VIXL_ASSERT(((target - this) & 3) == 0);
  Instr branch_imm = 0;
  uint32_t imm_mask = 0;
  int offset = (target - this) >> kInstructionSizeLog2;
  switch (BranchType()) {
    case CondBranchType: {
      branch_imm = Assembler::ImmCondBranch(offset);
      imm_mask = ImmCondBranch_mask;
      break;
    }
    case UncondBranchType: {
      branch_imm = Assembler::ImmUncondBranch(offset);
      imm_mask = ImmUncondBranch_mask;
      break;
    }
    case CompareBranchType: {
      branch_imm = Assembler::ImmCmpBranch(offset);
      imm_mask = ImmCmpBranch_mask;
      break;
    }
    case TestBranchType: {
      branch_imm = Assembler::ImmTestBranch(offset);
      imm_mask = ImmTestBranch_mask;
      break;
    }
    default: VIXL_UNREACHABLE();
  }
  SetInstructionBits(Mask(~imm_mask) | branch_imm);
}


void Instruction::SetImmLLiteral(const Instruction* source) {
  VIXL_ASSERT(IsWordAligned(source));
  ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
  Instr imm = Assembler::ImmLLiteral(offset);
  Instr mask = ImmLLiteral_mask;

  SetInstructionBits(Mask(~mask) | imm);
}
}  // namespace vixl