aboutsummaryrefslogtreecommitdiff
path: root/crypto/hash-nettle.c
blob: 6a206dcb18c9ae2523881bf4a9df1d58838de9bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
 * QEMU Crypto hash algorithms
 *
 * Copyright (c) 2016 Red Hat, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "crypto/hash.h"
#include <nettle/md5.h>
#include <nettle/sha.h>
#include <nettle/ripemd160.h>

typedef void (*qcrypto_nettle_init)(void *ctx);
typedef void (*qcrypto_nettle_write)(void *ctx,
                                     unsigned int len,
                                     const uint8_t *buf);
typedef void (*qcrypto_nettle_result)(void *ctx,
                                      unsigned int len,
                                      uint8_t *buf);

union qcrypto_hash_ctx {
    struct md5_ctx md5;
    struct sha1_ctx sha1;
    struct sha224_ctx sha224;
    struct sha256_ctx sha256;
    struct sha384_ctx sha384;
    struct sha512_ctx sha512;
    struct ripemd160_ctx ripemd160;
};

struct qcrypto_hash_alg {
    qcrypto_nettle_init init;
    qcrypto_nettle_write write;
    qcrypto_nettle_result result;
    size_t len;
} qcrypto_hash_alg_map[] = {
    [QCRYPTO_HASH_ALG_MD5] = {
        .init = (qcrypto_nettle_init)md5_init,
        .write = (qcrypto_nettle_write)md5_update,
        .result = (qcrypto_nettle_result)md5_digest,
        .len = MD5_DIGEST_SIZE,
    },
    [QCRYPTO_HASH_ALG_SHA1] = {
        .init = (qcrypto_nettle_init)sha1_init,
        .write = (qcrypto_nettle_write)sha1_update,
        .result = (qcrypto_nettle_result)sha1_digest,
        .len = SHA1_DIGEST_SIZE,
    },
    [QCRYPTO_HASH_ALG_SHA224] = {
        .init = (qcrypto_nettle_init)sha224_init,
        .write = (qcrypto_nettle_write)sha224_update,
        .result = (qcrypto_nettle_result)sha224_digest,
        .len = SHA224_DIGEST_SIZE,
    },
    [QCRYPTO_HASH_ALG_SHA256] = {
        .init = (qcrypto_nettle_init)sha256_init,
        .write = (qcrypto_nettle_write)sha256_update,
        .result = (qcrypto_nettle_result)sha256_digest,
        .len = SHA256_DIGEST_SIZE,
    },
    [QCRYPTO_HASH_ALG_SHA384] = {
        .init = (qcrypto_nettle_init)sha384_init,
        .write = (qcrypto_nettle_write)sha384_update,
        .result = (qcrypto_nettle_result)sha384_digest,
        .len = SHA384_DIGEST_SIZE,
    },
    [QCRYPTO_HASH_ALG_SHA512] = {
        .init = (qcrypto_nettle_init)sha512_init,
        .write = (qcrypto_nettle_write)sha512_update,
        .result = (qcrypto_nettle_result)sha512_digest,
        .len = SHA512_DIGEST_SIZE,
    },
    [QCRYPTO_HASH_ALG_RIPEMD160] = {
        .init = (qcrypto_nettle_init)ripemd160_init,
        .write = (qcrypto_nettle_write)ripemd160_update,
        .result = (qcrypto_nettle_result)ripemd160_digest,
        .len = RIPEMD160_DIGEST_SIZE,
    },
};

gboolean qcrypto_hash_supports(QCryptoHashAlgorithm alg)
{
    if (alg < G_N_ELEMENTS(qcrypto_hash_alg_map) &&
        qcrypto_hash_alg_map[alg].init != NULL) {
        return true;
    }
    return false;
}


int qcrypto_hash_bytesv(QCryptoHashAlgorithm alg,
                        const struct iovec *iov,
                        size_t niov,
                        uint8_t **result,
                        size_t *resultlen,
                        Error **errp)
{
    int i;
    union qcrypto_hash_ctx ctx;

    if (!qcrypto_hash_supports(alg)) {
        error_setg(errp,
                   "Unknown hash algorithm %d",
                   alg);
        return -1;
    }

    qcrypto_hash_alg_map[alg].init(&ctx);

    for (i = 0; i < niov; i++) {
        /* Some versions of nettle have functions
         * declared with 'int' instead of 'size_t'
         * so to be safe avoid writing more than
         * UINT_MAX bytes at a time
         */
        size_t len = iov[i].iov_len;
        uint8_t *base = iov[i].iov_base;
        while (len) {
            size_t shortlen = MIN(len, UINT_MAX);
            qcrypto_hash_alg_map[alg].write(&ctx, len, base);
            len -= shortlen;
            base += len;
        }
    }

    if (*resultlen == 0) {
        *resultlen = qcrypto_hash_alg_map[alg].len;
        *result = g_new0(uint8_t, *resultlen);
    } else if (*resultlen != qcrypto_hash_alg_map[alg].len) {
        error_setg(errp,
                   "Result buffer size %zu is smaller than hash %zu",
                   *resultlen, qcrypto_hash_alg_map[alg].len);
        return -1;
    }

    qcrypto_hash_alg_map[alg].result(&ctx, *resultlen, *result);

    return 0;
}