aboutsummaryrefslogtreecommitdiff
path: root/cpu-common.h
blob: 7c9cef85b349353ad1e8a6b8265355a6a5df3600 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#ifndef CPU_COMMON_H
#define CPU_COMMON_H 1

/* CPU interfaces that are target independent.  */

#ifdef TARGET_PHYS_ADDR_BITS
#include "targphys.h"
#endif

#ifndef NEED_CPU_H
#include "poison.h"
#endif

#include "bswap.h"
#include "qemu-queue.h"

#if !defined(CONFIG_USER_ONLY)

enum device_endian {
    DEVICE_NATIVE_ENDIAN,
    DEVICE_BIG_ENDIAN,
    DEVICE_LITTLE_ENDIAN,
};

/* address in the RAM (different from a physical address) */
#if defined(CONFIG_XEN_BACKEND) && TARGET_PHYS_ADDR_BITS == 64
typedef uint64_t ram_addr_t;
#  define RAM_ADDR_MAX UINT64_MAX
#  define RAM_ADDR_FMT "%" PRIx64
#else
typedef unsigned long ram_addr_t;
#  define RAM_ADDR_MAX ULONG_MAX
#  define RAM_ADDR_FMT "%lx"
#endif

/* memory API */

typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);

void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
                                      ram_addr_t size,
                                      ram_addr_t phys_offset,
                                      ram_addr_t region_offset,
                                      bool log_dirty);

static inline void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
                                                       ram_addr_t size,
                                                       ram_addr_t phys_offset,
                                                       ram_addr_t region_offset)
{
    cpu_register_physical_memory_log(start_addr, size, phys_offset,
                                     region_offset, false);
}

static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
                                                ram_addr_t size,
                                                ram_addr_t phys_offset)
{
    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
}

ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
                        ram_addr_t size, void *host);
ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size);
void qemu_ram_free(ram_addr_t addr);
void qemu_ram_free_from_ptr(ram_addr_t addr);
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
/* This should only be used for ram local to a device.  */
void *qemu_get_ram_ptr(ram_addr_t addr);
void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size);
/* Same but slower, to use for migration, where the order of
 * RAMBlocks must not change. */
void *qemu_safe_ram_ptr(ram_addr_t addr);
void qemu_put_ram_ptr(void *addr);
/* This should not be used by devices.  */
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr);
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);

int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
                           CPUWriteMemoryFunc * const *mem_write,
                           void *opaque, enum device_endian endian);
void cpu_unregister_io_memory(int table_address);

void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
                            int len, int is_write);
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
                                            void *buf, int len)
{
    cpu_physical_memory_rw(addr, buf, len, 0);
}
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
                                             const void *buf, int len)
{
    cpu_physical_memory_rw(addr, (void *)buf, len, 1);
}
void *cpu_physical_memory_map(target_phys_addr_t addr,
                              target_phys_addr_t *plen,
                              int is_write);
void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
                               int is_write, target_phys_addr_t access_len);
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
void cpu_unregister_map_client(void *cookie);

struct CPUPhysMemoryClient;
typedef struct CPUPhysMemoryClient CPUPhysMemoryClient;
struct CPUPhysMemoryClient {
    void (*set_memory)(struct CPUPhysMemoryClient *client,
                       target_phys_addr_t start_addr,
                       ram_addr_t size,
                       ram_addr_t phys_offset,
                       bool log_dirty);
    int (*sync_dirty_bitmap)(struct CPUPhysMemoryClient *client,
                             target_phys_addr_t start_addr,
                             target_phys_addr_t end_addr);
    int (*migration_log)(struct CPUPhysMemoryClient *client,
                         int enable);
    int (*log_start)(struct CPUPhysMemoryClient *client,
                     target_phys_addr_t phys_addr, ram_addr_t size);
    int (*log_stop)(struct CPUPhysMemoryClient *client,
                    target_phys_addr_t phys_addr, ram_addr_t size);
    QLIST_ENTRY(CPUPhysMemoryClient) list;
};

void cpu_register_phys_memory_client(CPUPhysMemoryClient *);
void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *);

/* Coalesced MMIO regions are areas where write operations can be reordered.
 * This usually implies that write operations are side-effect free.  This allows
 * batching which can make a major impact on performance when using
 * virtualization.
 */
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);

void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);

void qemu_flush_coalesced_mmio_buffer(void);

uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_le_phys(target_phys_addr_t addr);
uint32_t lduw_be_phys(target_phys_addr_t addr);
uint32_t ldl_le_phys(target_phys_addr_t addr);
uint32_t ldl_be_phys(target_phys_addr_t addr);
uint64_t ldq_le_phys(target_phys_addr_t addr);
uint64_t ldq_be_phys(target_phys_addr_t addr);
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_le_phys(target_phys_addr_t addr, uint32_t val);
void stw_be_phys(target_phys_addr_t addr, uint32_t val);
void stl_le_phys(target_phys_addr_t addr, uint32_t val);
void stl_be_phys(target_phys_addr_t addr, uint32_t val);
void stq_le_phys(target_phys_addr_t addr, uint64_t val);
void stq_be_phys(target_phys_addr_t addr, uint64_t val);

#ifdef NEED_CPU_H
uint32_t lduw_phys(target_phys_addr_t addr);
uint32_t ldl_phys(target_phys_addr_t addr);
uint64_t ldq_phys(target_phys_addr_t addr);
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
void stl_phys(target_phys_addr_t addr, uint32_t val);
void stq_phys(target_phys_addr_t addr, uint64_t val);
#endif

void cpu_physical_memory_write_rom(target_phys_addr_t addr,
                                   const uint8_t *buf, int len);

#define IO_MEM_SHIFT       3

#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)

/* Acts like a ROM when read and like a device when written.  */
#define IO_MEM_ROMD        (1)
#define IO_MEM_SUBPAGE     (2)

#endif

#endif /* !CPU_COMMON_H */