aboutsummaryrefslogtreecommitdiff
path: root/contrib/plugins/cache.c
blob: 2e25184a7f15b960e2d05cb49029d4510592cb69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/*
 * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
 *
 * License: GNU GPL, version 2 or later.
 *   See the COPYING file in the top-level directory.
 */

#include <inttypes.h>
#include <stdio.h>
#include <glib.h>

#include <qemu-plugin.h>

#define STRTOLL(x) g_ascii_strtoll(x, NULL, 10)

QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;

static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;

static GHashTable *miss_ht;

static GMutex hashtable_lock;
static GRand *rng;

static int limit;
static bool sys;

enum EvictionPolicy {
    LRU,
    FIFO,
    RAND,
};

enum EvictionPolicy policy;

/*
 * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
 * put in any of the blocks inside the set. The number of block per set is
 * called the associativity (assoc).
 *
 * Each block contains the stored tag and a valid bit. Since this is not
 * a functional simulator, the data itself is not stored. We only identify
 * whether a block is in the cache or not by searching for its tag.
 *
 * In order to search for memory data in the cache, the set identifier and tag
 * are extracted from the address and the set is probed to see whether a tag
 * match occur.
 *
 * An address is logically divided into three portions: The block offset,
 * the set number, and the tag.
 *
 * The set number is used to identify the set in which the block may exist.
 * The tag is compared against all the tags of a set to search for a match. If a
 * match is found, then the access is a hit.
 *
 * The CacheSet also contains bookkeaping information about eviction details.
 */

typedef struct {
    uint64_t tag;
    bool valid;
} CacheBlock;

typedef struct {
    CacheBlock *blocks;
    uint64_t *lru_priorities;
    uint64_t lru_gen_counter;
    GQueue *fifo_queue;
} CacheSet;

typedef struct {
    CacheSet *sets;
    int num_sets;
    int cachesize;
    int assoc;
    int blksize_shift;
    uint64_t set_mask;
    uint64_t tag_mask;
    uint64_t accesses;
    uint64_t misses;
} Cache;

typedef struct {
    char *disas_str;
    const char *symbol;
    uint64_t addr;
    uint64_t l1_dmisses;
    uint64_t l1_imisses;
    uint64_t l2_misses;
} InsnData;

void (*update_hit)(Cache *cache, int set, int blk);
void (*update_miss)(Cache *cache, int set, int blk);

void (*metadata_init)(Cache *cache);
void (*metadata_destroy)(Cache *cache);

static int cores;
static Cache **l1_dcaches, **l1_icaches;

static bool use_l2;
static Cache **l2_ucaches;

static GMutex *l1_dcache_locks;
static GMutex *l1_icache_locks;
static GMutex *l2_ucache_locks;

static uint64_t l1_dmem_accesses;
static uint64_t l1_imem_accesses;
static uint64_t l1_imisses;
static uint64_t l1_dmisses;

static uint64_t l2_mem_accesses;
static uint64_t l2_misses;

static int pow_of_two(int num)
{
    g_assert((num & (num - 1)) == 0);
    int ret = 0;
    while (num /= 2) {
        ret++;
    }
    return ret;
}

/*
 * LRU evection policy: For each set, a generation counter is maintained
 * alongside a priority array.
 *
 * On each set access, the generation counter is incremented.
 *
 * On a cache hit: The hit-block is assigned the current generation counter,
 * indicating that it is the most recently used block.
 *
 * On a cache miss: The block with the least priority is searched and replaced
 * with the newly-cached block, of which the priority is set to the current
 * generation number.
 */

static void lru_priorities_init(Cache *cache)
{
    int i;

    for (i = 0; i < cache->num_sets; i++) {
        cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
        cache->sets[i].lru_gen_counter = 0;
    }
}

static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
{
    CacheSet *set = &cache->sets[set_idx];
    set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
    set->lru_gen_counter++;
}

static int lru_get_lru_block(Cache *cache, int set_idx)
{
    int i, min_idx, min_priority;

    min_priority = cache->sets[set_idx].lru_priorities[0];
    min_idx = 0;

    for (i = 1; i < cache->assoc; i++) {
        if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
            min_priority = cache->sets[set_idx].lru_priorities[i];
            min_idx = i;
        }
    }
    return min_idx;
}

static void lru_priorities_destroy(Cache *cache)
{
    int i;

    for (i = 0; i < cache->num_sets; i++) {
        g_free(cache->sets[i].lru_priorities);
    }
}

/*
 * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
 * stores accesses to the cache.
 *
 * On a compulsory miss: The block index is enqueued to the fifo_queue to
 * indicate that it's the latest cached block.
 *
 * On a conflict miss: The first-in block is removed from the cache and the new
 * block is put in its place and enqueued to the FIFO queue.
 */

static void fifo_init(Cache *cache)
{
    int i;

    for (i = 0; i < cache->num_sets; i++) {
        cache->sets[i].fifo_queue = g_queue_new();
    }
}

static int fifo_get_first_block(Cache *cache, int set)
{
    GQueue *q = cache->sets[set].fifo_queue;
    return GPOINTER_TO_INT(g_queue_pop_tail(q));
}

static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
{
    GQueue *q = cache->sets[set].fifo_queue;
    g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
}

static void fifo_destroy(Cache *cache)
{
    int i;

    for (i = 0; i < cache->num_sets; i++) {
        g_queue_free(cache->sets[i].fifo_queue);
    }
}

static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
{
    return addr & cache->tag_mask;
}

static inline uint64_t extract_set(Cache *cache, uint64_t addr)
{
    return (addr & cache->set_mask) >> cache->blksize_shift;
}

static const char *cache_config_error(int blksize, int assoc, int cachesize)
{
    if (cachesize % blksize != 0) {
        return "cache size must be divisible by block size";
    } else if (cachesize % (blksize * assoc) != 0) {
        return "cache size must be divisible by set size (assoc * block size)";
    } else {
        return NULL;
    }
}

static bool bad_cache_params(int blksize, int assoc, int cachesize)
{
    return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
}

static Cache *cache_init(int blksize, int assoc, int cachesize)
{
    Cache *cache;
    int i;
    uint64_t blk_mask;

    /*
     * This function shall not be called directly, and hence expects suitable
     * parameters.
     */
    g_assert(!bad_cache_params(blksize, assoc, cachesize));

    cache = g_new(Cache, 1);
    cache->assoc = assoc;
    cache->cachesize = cachesize;
    cache->num_sets = cachesize / (blksize * assoc);
    cache->sets = g_new(CacheSet, cache->num_sets);
    cache->blksize_shift = pow_of_two(blksize);
    cache->accesses = 0;
    cache->misses = 0;

    for (i = 0; i < cache->num_sets; i++) {
        cache->sets[i].blocks = g_new0(CacheBlock, assoc);
    }

    blk_mask = blksize - 1;
    cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
    cache->tag_mask = ~(cache->set_mask | blk_mask);

    if (metadata_init) {
        metadata_init(cache);
    }

    return cache;
}

static Cache **caches_init(int blksize, int assoc, int cachesize)
{
    Cache **caches;
    int i;

    if (bad_cache_params(blksize, assoc, cachesize)) {
        return NULL;
    }

    caches = g_new(Cache *, cores);

    for (i = 0; i < cores; i++) {
        caches[i] = cache_init(blksize, assoc, cachesize);
    }

    return caches;
}

static int get_invalid_block(Cache *cache, uint64_t set)
{
    int i;

    for (i = 0; i < cache->assoc; i++) {
        if (!cache->sets[set].blocks[i].valid) {
            return i;
        }
    }

    return -1;
}

static int get_replaced_block(Cache *cache, int set)
{
    switch (policy) {
    case RAND:
        return g_rand_int_range(rng, 0, cache->assoc);
    case LRU:
        return lru_get_lru_block(cache, set);
    case FIFO:
        return fifo_get_first_block(cache, set);
    default:
        g_assert_not_reached();
    }
}

static int in_cache(Cache *cache, uint64_t addr)
{
    int i;
    uint64_t tag, set;

    tag = extract_tag(cache, addr);
    set = extract_set(cache, addr);

    for (i = 0; i < cache->assoc; i++) {
        if (cache->sets[set].blocks[i].tag == tag &&
                cache->sets[set].blocks[i].valid) {
            return i;
        }
    }

    return -1;
}

/**
 * access_cache(): Simulate a cache access
 * @cache: The cache under simulation
 * @addr: The address of the requested memory location
 *
 * Returns true if the requsted data is hit in the cache and false when missed.
 * The cache is updated on miss for the next access.
 */
static bool access_cache(Cache *cache, uint64_t addr)
{
    int hit_blk, replaced_blk;
    uint64_t tag, set;

    tag = extract_tag(cache, addr);
    set = extract_set(cache, addr);

    hit_blk = in_cache(cache, addr);
    if (hit_blk != -1) {
        if (update_hit) {
            update_hit(cache, set, hit_blk);
        }
        return true;
    }

    replaced_blk = get_invalid_block(cache, set);

    if (replaced_blk == -1) {
        replaced_blk = get_replaced_block(cache, set);
    }

    if (update_miss) {
        update_miss(cache, set, replaced_blk);
    }

    cache->sets[set].blocks[replaced_blk].tag = tag;
    cache->sets[set].blocks[replaced_blk].valid = true;

    return false;
}

static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
                            uint64_t vaddr, void *userdata)
{
    uint64_t effective_addr;
    struct qemu_plugin_hwaddr *hwaddr;
    int cache_idx;
    InsnData *insn;
    bool hit_in_l1;

    hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
    if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
        return;
    }

    effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
    cache_idx = vcpu_index % cores;

    g_mutex_lock(&l1_dcache_locks[cache_idx]);
    hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr);
    if (!hit_in_l1) {
        insn = userdata;
        __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST);
        l1_dcaches[cache_idx]->misses++;
    }
    l1_dcaches[cache_idx]->accesses++;
    g_mutex_unlock(&l1_dcache_locks[cache_idx]);

    if (hit_in_l1 || !use_l2) {
        /* No need to access L2 */
        return;
    }

    g_mutex_lock(&l2_ucache_locks[cache_idx]);
    if (!access_cache(l2_ucaches[cache_idx], effective_addr)) {
        insn = userdata;
        __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
        l2_ucaches[cache_idx]->misses++;
    }
    l2_ucaches[cache_idx]->accesses++;
    g_mutex_unlock(&l2_ucache_locks[cache_idx]);
}

static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
{
    uint64_t insn_addr;
    InsnData *insn;
    int cache_idx;
    bool hit_in_l1;

    insn_addr = ((InsnData *) userdata)->addr;

    cache_idx = vcpu_index % cores;
    g_mutex_lock(&l1_icache_locks[cache_idx]);
    hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr);
    if (!hit_in_l1) {
        insn = userdata;
        __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST);
        l1_icaches[cache_idx]->misses++;
    }
    l1_icaches[cache_idx]->accesses++;
    g_mutex_unlock(&l1_icache_locks[cache_idx]);

    if (hit_in_l1 || !use_l2) {
        /* No need to access L2 */
        return;
    }

    g_mutex_lock(&l2_ucache_locks[cache_idx]);
    if (!access_cache(l2_ucaches[cache_idx], insn_addr)) {
        insn = userdata;
        __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
        l2_ucaches[cache_idx]->misses++;
    }
    l2_ucaches[cache_idx]->accesses++;
    g_mutex_unlock(&l2_ucache_locks[cache_idx]);
}

static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
    size_t n_insns;
    size_t i;
    InsnData *data;

    n_insns = qemu_plugin_tb_n_insns(tb);
    for (i = 0; i < n_insns; i++) {
        struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
        uint64_t effective_addr;

        if (sys) {
            effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
        } else {
            effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
        }

        /*
         * Instructions might get translated multiple times, we do not create
         * new entries for those instructions. Instead, we fetch the same
         * entry from the hash table and register it for the callback again.
         */
        g_mutex_lock(&hashtable_lock);
        data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
        if (data == NULL) {
            data = g_new0(InsnData, 1);
            data->disas_str = qemu_plugin_insn_disas(insn);
            data->symbol = qemu_plugin_insn_symbol(insn);
            data->addr = effective_addr;
            g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
                               (gpointer) data);
        }
        g_mutex_unlock(&hashtable_lock);

        qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
                                         QEMU_PLUGIN_CB_NO_REGS,
                                         rw, data);

        qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
                                               QEMU_PLUGIN_CB_NO_REGS, data);
    }
}

static void insn_free(gpointer data)
{
    InsnData *insn = (InsnData *) data;
    g_free(insn->disas_str);
    g_free(insn);
}

static void cache_free(Cache *cache)
{
    for (int i = 0; i < cache->num_sets; i++) {
        g_free(cache->sets[i].blocks);
    }

    if (metadata_destroy) {
        metadata_destroy(cache);
    }

    g_free(cache->sets);
    g_free(cache);
}

static void caches_free(Cache **caches)
{
    int i;

    for (i = 0; i < cores; i++) {
        cache_free(caches[i]);
    }
}

static void append_stats_line(GString *line, uint64_t l1_daccess,
                              uint64_t l1_dmisses, uint64_t l1_iaccess,
                              uint64_t l1_imisses,  uint64_t l2_access,
                              uint64_t l2_misses)
{
    double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate;

    l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0;
    l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0;

    g_string_append_printf(line, "%-14lu %-12lu %9.4lf%%  %-14lu %-12lu"
                           " %9.4lf%%",
                           l1_daccess,
                           l1_dmisses,
                           l1_daccess ? l1_dmiss_rate : 0.0,
                           l1_iaccess,
                           l1_imisses,
                           l1_iaccess ? l1_imiss_rate : 0.0);

    if (use_l2) {
        l2_miss_rate =  ((double) l2_misses) / (l2_access) * 100.0;
        g_string_append_printf(line, "  %-12lu %-11lu %10.4lf%%",
                               l2_access,
                               l2_misses,
                               l2_access ? l2_miss_rate : 0.0);
    }

    g_string_append(line, "\n");
}

static void sum_stats(void)
{
    int i;

    g_assert(cores > 1);
    for (i = 0; i < cores; i++) {
        l1_imisses += l1_icaches[i]->misses;
        l1_dmisses += l1_dcaches[i]->misses;
        l1_imem_accesses += l1_icaches[i]->accesses;
        l1_dmem_accesses += l1_dcaches[i]->accesses;

        if (use_l2) {
            l2_misses += l2_ucaches[i]->misses;
            l2_mem_accesses += l2_ucaches[i]->accesses;
        }
    }
}

static int dcmp(gconstpointer a, gconstpointer b)
{
    InsnData *insn_a = (InsnData *) a;
    InsnData *insn_b = (InsnData *) b;

    return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1;
}

static int icmp(gconstpointer a, gconstpointer b)
{
    InsnData *insn_a = (InsnData *) a;
    InsnData *insn_b = (InsnData *) b;

    return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1;
}

static int l2_cmp(gconstpointer a, gconstpointer b)
{
    InsnData *insn_a = (InsnData *) a;
    InsnData *insn_b = (InsnData *) b;

    return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1;
}

static void log_stats(void)
{
    int i;
    Cache *icache, *dcache, *l2_cache;

    g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses,"
                                          " dmiss rate, insn accesses,"
                                          " insn misses, imiss rate");

    if (use_l2) {
        g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate");
    }

    g_string_append(rep, "\n");

    for (i = 0; i < cores; i++) {
        g_string_append_printf(rep, "%-8d", i);
        dcache = l1_dcaches[i];
        icache = l1_icaches[i];
        l2_cache = use_l2 ? l2_ucaches[i] : NULL;
        append_stats_line(rep, dcache->accesses, dcache->misses,
                icache->accesses, icache->misses,
                l2_cache ? l2_cache->accesses : 0,
                l2_cache ? l2_cache->misses : 0);
    }

    if (cores > 1) {
        sum_stats();
        g_string_append_printf(rep, "%-8s", "sum");
        append_stats_line(rep, l1_dmem_accesses, l1_dmisses,
                l1_imem_accesses, l1_imisses,
                l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0);
    }

    g_string_append(rep, "\n");
    qemu_plugin_outs(rep->str);
}

static void log_top_insns(void)
{
    int i;
    GList *curr, *miss_insns;
    InsnData *insn;

    miss_insns = g_hash_table_get_values(miss_ht);
    miss_insns = g_list_sort(miss_insns, dcmp);
    g_autoptr(GString) rep = g_string_new("");
    g_string_append_printf(rep, "%s", "address, data misses, instruction\n");

    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
        insn = (InsnData *) curr->data;
        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
        if (insn->symbol) {
            g_string_append_printf(rep, " (%s)", insn->symbol);
        }
        g_string_append_printf(rep, ", %ld, %s\n", insn->l1_dmisses,
                               insn->disas_str);
    }

    miss_insns = g_list_sort(miss_insns, icmp);
    g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");

    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
        insn = (InsnData *) curr->data;
        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
        if (insn->symbol) {
            g_string_append_printf(rep, " (%s)", insn->symbol);
        }
        g_string_append_printf(rep, ", %ld, %s\n", insn->l1_imisses,
                               insn->disas_str);
    }

    if (!use_l2) {
        goto finish;
    }

    miss_insns = g_list_sort(miss_insns, l2_cmp);
    g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n");

    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
        insn = (InsnData *) curr->data;
        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
        if (insn->symbol) {
            g_string_append_printf(rep, " (%s)", insn->symbol);
        }
        g_string_append_printf(rep, ", %ld, %s\n", insn->l2_misses,
                               insn->disas_str);
    }

finish:
    qemu_plugin_outs(rep->str);
    g_list_free(miss_insns);
}

static void plugin_exit(qemu_plugin_id_t id, void *p)
{
    log_stats();
    log_top_insns();

    caches_free(l1_dcaches);
    caches_free(l1_icaches);

    g_free(l1_dcache_locks);
    g_free(l1_icache_locks);

    if (use_l2) {
        caches_free(l2_ucaches);
        g_free(l2_ucache_locks);
    }

    g_hash_table_destroy(miss_ht);
}

static void policy_init(void)
{
    switch (policy) {
    case LRU:
        update_hit = lru_update_blk;
        update_miss = lru_update_blk;
        metadata_init = lru_priorities_init;
        metadata_destroy = lru_priorities_destroy;
        break;
    case FIFO:
        update_miss = fifo_update_on_miss;
        metadata_init = fifo_init;
        metadata_destroy = fifo_destroy;
        break;
    case RAND:
        rng = g_rand_new();
        break;
    default:
        g_assert_not_reached();
    }
}

QEMU_PLUGIN_EXPORT
int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
                        int argc, char **argv)
{
    int i;
    int l1_iassoc, l1_iblksize, l1_icachesize;
    int l1_dassoc, l1_dblksize, l1_dcachesize;
    int l2_assoc, l2_blksize, l2_cachesize;

    limit = 32;
    sys = info->system_emulation;

    l1_dassoc = 8;
    l1_dblksize = 64;
    l1_dcachesize = l1_dblksize * l1_dassoc * 32;

    l1_iassoc = 8;
    l1_iblksize = 64;
    l1_icachesize = l1_iblksize * l1_iassoc * 32;

    l2_assoc = 16;
    l2_blksize = 64;
    l2_cachesize = l2_assoc * l2_blksize * 2048;

    policy = LRU;

    cores = sys ? qemu_plugin_n_vcpus() : 1;

    for (i = 0; i < argc; i++) {
        char *opt = argv[i];
        g_autofree char **tokens = g_strsplit(opt, "=", 2);

        if (g_strcmp0(tokens[0], "iblksize") == 0) {
            l1_iblksize = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "iassoc") == 0) {
            l1_iassoc = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "icachesize") == 0) {
            l1_icachesize = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "dblksize") == 0) {
            l1_dblksize = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "dassoc") == 0) {
            l1_dassoc = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "dcachesize") == 0) {
            l1_dcachesize = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "limit") == 0) {
            limit = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "cores") == 0) {
            cores = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) {
            use_l2 = true;
            l2_cachesize = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "l2blksize") == 0) {
            use_l2 = true;
            l2_blksize = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "l2assoc") == 0) {
            use_l2 = true;
            l2_assoc = STRTOLL(tokens[1]);
        } else if (g_strcmp0(tokens[0], "l2") == 0) {
            if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) {
                fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
                return -1;
            }
        } else if (g_strcmp0(tokens[0], "evict") == 0) {
            if (g_strcmp0(tokens[1], "rand") == 0) {
                policy = RAND;
            } else if (g_strcmp0(tokens[1], "lru") == 0) {
                policy = LRU;
            } else if (g_strcmp0(tokens[1], "fifo") == 0) {
                policy = FIFO;
            } else {
                fprintf(stderr, "invalid eviction policy: %s\n", opt);
                return -1;
            }
        } else {
            fprintf(stderr, "option parsing failed: %s\n", opt);
            return -1;
        }
    }

    policy_init();

    l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize);
    if (!l1_dcaches) {
        const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize);
        fprintf(stderr, "dcache cannot be constructed from given parameters\n");
        fprintf(stderr, "%s\n", err);
        return -1;
    }

    l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize);
    if (!l1_icaches) {
        const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize);
        fprintf(stderr, "icache cannot be constructed from given parameters\n");
        fprintf(stderr, "%s\n", err);
        return -1;
    }

    l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL;
    if (!l2_ucaches && use_l2) {
        const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize);
        fprintf(stderr, "L2 cache cannot be constructed from given parameters\n");
        fprintf(stderr, "%s\n", err);
        return -1;
    }

    l1_dcache_locks = g_new0(GMutex, cores);
    l1_icache_locks = g_new0(GMutex, cores);
    l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL;

    qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
    qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);

    miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);

    return 0;
}