aboutsummaryrefslogtreecommitdiff
path: root/block/stream.c
blob: 0efe1adfd5e1302dddf3378a48d4eafbe2560504 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
 * Image streaming
 *
 * Copyright IBM, Corp. 2011
 *
 * Authors:
 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
 *
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
 * See the COPYING.LIB file in the top-level directory.
 *
 */

#include "trace.h"
#include "block_int.h"

enum {
    /*
     * Size of data buffer for populating the image file.  This should be large
     * enough to process multiple clusters in a single call, so that populating
     * contiguous regions of the image is efficient.
     */
    STREAM_BUFFER_SIZE = 512 * 1024, /* in bytes */
};

#define SLICE_TIME 100000000ULL /* ns */

typedef struct {
    int64_t next_slice_time;
    uint64_t slice_quota;
    uint64_t dispatched;
} RateLimit;

static int64_t ratelimit_calculate_delay(RateLimit *limit, uint64_t n)
{
    int64_t delay_ns = 0;
    int64_t now = qemu_get_clock_ns(rt_clock);

    if (limit->next_slice_time < now) {
        limit->next_slice_time = now + SLICE_TIME;
        limit->dispatched = 0;
    }
    if (limit->dispatched + n > limit->slice_quota) {
        delay_ns = limit->next_slice_time - now;
    } else {
        limit->dispatched += n;
    }
    return delay_ns;
}

static void ratelimit_set_speed(RateLimit *limit, uint64_t speed)
{
    limit->slice_quota = speed / (1000000000ULL / SLICE_TIME);
}

typedef struct StreamBlockJob {
    BlockJob common;
    RateLimit limit;
    BlockDriverState *base;
    char backing_file_id[1024];
} StreamBlockJob;

static int coroutine_fn stream_populate(BlockDriverState *bs,
                                        int64_t sector_num, int nb_sectors,
                                        void *buf)
{
    struct iovec iov = {
        .iov_base = buf,
        .iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
    };
    QEMUIOVector qiov;

    qemu_iovec_init_external(&qiov, &iov, 1);

    /* Copy-on-read the unallocated clusters */
    return bdrv_co_copy_on_readv(bs, sector_num, nb_sectors, &qiov);
}

static void close_unused_images(BlockDriverState *top, BlockDriverState *base,
                                const char *base_id)
{
    BlockDriverState *intermediate;
    intermediate = top->backing_hd;

    while (intermediate) {
        BlockDriverState *unused;

        /* reached base */
        if (intermediate == base) {
            break;
        }

        unused = intermediate;
        intermediate = intermediate->backing_hd;
        unused->backing_hd = NULL;
        bdrv_delete(unused);
    }
    top->backing_hd = base;

    pstrcpy(top->backing_file, sizeof(top->backing_file), "");
    pstrcpy(top->backing_format, sizeof(top->backing_format), "");
    if (base_id) {
        pstrcpy(top->backing_file, sizeof(top->backing_file), base_id);
        if (base->drv) {
            pstrcpy(top->backing_format, sizeof(top->backing_format),
                    base->drv->format_name);
        }
    }

}

/*
 * Given an image chain: [BASE] -> [INTER1] -> [INTER2] -> [TOP]
 *
 * Return true if the given sector is allocated in top.
 * Return false if the given sector is allocated in intermediate images.
 * Return true otherwise.
 *
 * 'pnum' is set to the number of sectors (including and immediately following
 *  the specified sector) that are known to be in the same
 *  allocated/unallocated state.
 *
 */
static int coroutine_fn is_allocated_base(BlockDriverState *top,
                                          BlockDriverState *base,
                                          int64_t sector_num,
                                          int nb_sectors, int *pnum)
{
    BlockDriverState *intermediate;
    int ret, n;

    ret = bdrv_co_is_allocated(top, sector_num, nb_sectors, &n);
    if (ret) {
        *pnum = n;
        return ret;
    }

    /*
     * Is the unallocated chunk [sector_num, n] also
     * unallocated between base and top?
     */
    intermediate = top->backing_hd;

    while (intermediate) {
        int pnum_inter;

        /* reached base */
        if (intermediate == base) {
            *pnum = n;
            return 1;
        }
        ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
                                   &pnum_inter);
        if (ret < 0) {
            return ret;
        } else if (ret) {
            *pnum = pnum_inter;
            return 0;
        }

        /*
         * [sector_num, nb_sectors] is unallocated on top but intermediate
         * might have
         *
         * [sector_num+x, nr_sectors] allocated.
         */
        if (n > pnum_inter) {
            n = pnum_inter;
        }

        intermediate = intermediate->backing_hd;
    }

    return 1;
}

static void coroutine_fn stream_run(void *opaque)
{
    StreamBlockJob *s = opaque;
    BlockDriverState *bs = s->common.bs;
    BlockDriverState *base = s->base;
    int64_t sector_num, end;
    int ret = 0;
    int n;
    void *buf;

    s->common.len = bdrv_getlength(bs);
    if (s->common.len < 0) {
        block_job_complete(&s->common, s->common.len);
        return;
    }

    end = s->common.len >> BDRV_SECTOR_BITS;
    buf = qemu_blockalign(bs, STREAM_BUFFER_SIZE);

    /* Turn on copy-on-read for the whole block device so that guest read
     * requests help us make progress.  Only do this when copying the entire
     * backing chain since the copy-on-read operation does not take base into
     * account.
     */
    if (!base) {
        bdrv_enable_copy_on_read(bs);
    }

    for (sector_num = 0; sector_num < end; sector_num += n) {
retry:
        if (block_job_is_cancelled(&s->common)) {
            break;
        }

        s->common.busy = true;
        if (base) {
            ret = is_allocated_base(bs, base, sector_num,
                                    STREAM_BUFFER_SIZE / BDRV_SECTOR_SIZE, &n);
        } else {
            ret = bdrv_co_is_allocated(bs, sector_num,
                                       STREAM_BUFFER_SIZE / BDRV_SECTOR_SIZE,
                                       &n);
        }
        trace_stream_one_iteration(s, sector_num, n, ret);
        if (ret == 0) {
            if (s->common.speed) {
                uint64_t delay_ns = ratelimit_calculate_delay(&s->limit, n);
                if (delay_ns > 0) {
                    s->common.busy = false;
                    co_sleep_ns(rt_clock, delay_ns);

                    /* Recheck cancellation and that sectors are unallocated */
                    goto retry;
                }
            }
            ret = stream_populate(bs, sector_num, n, buf);
        }
        if (ret < 0) {
            break;
        }
        ret = 0;

        /* Publish progress */
        s->common.offset += n * BDRV_SECTOR_SIZE;

        /* Note that even when no rate limit is applied we need to yield
         * with no pending I/O here so that qemu_aio_flush() returns.
         */
        s->common.busy = false;
        co_sleep_ns(rt_clock, 0);
    }

    if (!base) {
        bdrv_disable_copy_on_read(bs);
    }

    if (!block_job_is_cancelled(&s->common) && sector_num == end && ret == 0) {
        const char *base_id = NULL;
        if (base) {
            base_id = s->backing_file_id;
        }
        ret = bdrv_change_backing_file(bs, base_id, NULL);
        close_unused_images(bs, base, base_id);
    }

    qemu_vfree(buf);
    block_job_complete(&s->common, ret);
}

static int stream_set_speed(BlockJob *job, int64_t value)
{
    StreamBlockJob *s = container_of(job, StreamBlockJob, common);

    if (value < 0) {
        return -EINVAL;
    }
    ratelimit_set_speed(&s->limit, value / BDRV_SECTOR_SIZE);
    return 0;
}

static BlockJobType stream_job_type = {
    .instance_size = sizeof(StreamBlockJob),
    .job_type      = "stream",
    .set_speed     = stream_set_speed,
};

int stream_start(BlockDriverState *bs, BlockDriverState *base,
                 const char *base_id, BlockDriverCompletionFunc *cb,
                 void *opaque)
{
    StreamBlockJob *s;
    Coroutine *co;

    s = block_job_create(&stream_job_type, bs, cb, opaque);
    if (!s) {
        return -EBUSY; /* bs must already be in use */
    }

    s->base = base;
    if (base_id) {
        pstrcpy(s->backing_file_id, sizeof(s->backing_file_id), base_id);
    }

    co = qemu_coroutine_create(stream_run);
    trace_stream_start(bs, base, s, co, opaque);
    qemu_coroutine_enter(co, s);
    return 0;
}