aboutsummaryrefslogtreecommitdiff
path: root/accel/tcg/translate-all.c
blob: bef4c56cffe9690c3bf0b63ac59d1f71e98b867b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
/*
 *  Host code generation
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"

#define NO_CPU_IO_DEFS
#include "trace.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg/tcg.h"
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
#define HAVE_KINFO_GETVMMAP
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
#include <sys/proc.h>
#include <machine/profile.h>
#define _KERNEL
#include <sys/user.h>
#undef _KERNEL
#undef sigqueue
#include <libutil.h>
#endif
#endif
#else
#include "exec/ram_addr.h"
#endif

#include "exec/cputlb.h"
#include "exec/translate-all.h"
#include "exec/translator.h"
#include "qemu/bitmap.h"
#include "qemu/qemu-print.h"
#include "qemu/timer.h"
#include "qemu/main-loop.h"
#include "qemu/cacheinfo.h"
#include "exec/log.h"
#include "sysemu/cpus.h"
#include "sysemu/cpu-timers.h"
#include "sysemu/tcg.h"
#include "qapi/error.h"
#include "hw/core/tcg-cpu-ops.h"
#include "tb-jmp-cache.h"
#include "tb-hash.h"
#include "tb-context.h"
#include "internal.h"

/* make various TB consistency checks */

/**
 * struct page_entry - page descriptor entry
 * @pd:     pointer to the &struct PageDesc of the page this entry represents
 * @index:  page index of the page
 * @locked: whether the page is locked
 *
 * This struct helps us keep track of the locked state of a page, without
 * bloating &struct PageDesc.
 *
 * A page lock protects accesses to all fields of &struct PageDesc.
 *
 * See also: &struct page_collection.
 */
struct page_entry {
    PageDesc *pd;
    tb_page_addr_t index;
    bool locked;
};

/**
 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
 * @tree:   Binary search tree (BST) of the pages, with key == page index
 * @max:    Pointer to the page in @tree with the highest page index
 *
 * To avoid deadlock we lock pages in ascending order of page index.
 * When operating on a set of pages, we need to keep track of them so that
 * we can lock them in order and also unlock them later. For this we collect
 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
 * @tree implementation we use does not provide an O(1) operation to obtain the
 * highest-ranked element, we use @max to keep track of the inserted page
 * with the highest index. This is valuable because if a page is not in
 * the tree and its index is higher than @max's, then we can lock it
 * without breaking the locking order rule.
 *
 * Note on naming: 'struct page_set' would be shorter, but we already have a few
 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
 *
 * See also: page_collection_lock().
 */
struct page_collection {
    GTree *tree;
    struct page_entry *max;
};

/*
 * In system mode we want L1_MAP to be based on ram offsets,
 * while in user mode we want it to be based on virtual addresses.
 *
 * TODO: For user mode, see the caveat re host vs guest virtual
 * address spaces near GUEST_ADDR_MAX.
 */
#if !defined(CONFIG_USER_ONLY)
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
#else
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
#endif
#else
# define L1_MAP_ADDR_SPACE_BITS  MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
#endif

/* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
                  sizeof_field(TranslationBlock, trace_vcpu_dstate)
                  * BITS_PER_BYTE);

/*
 * L1 Mapping properties
 */
int v_l1_size;
int v_l1_shift;
int v_l2_levels;

void *l1_map[V_L1_MAX_SIZE];

TBContext tb_ctx;

static void page_table_config_init(void)
{
    uint32_t v_l1_bits;

    assert(TARGET_PAGE_BITS);
    /* The bits remaining after N lower levels of page tables.  */
    v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
    if (v_l1_bits < V_L1_MIN_BITS) {
        v_l1_bits += V_L2_BITS;
    }

    v_l1_size = 1 << v_l1_bits;
    v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
    v_l2_levels = v_l1_shift / V_L2_BITS - 1;

    assert(v_l1_bits <= V_L1_MAX_BITS);
    assert(v_l1_shift % V_L2_BITS == 0);
    assert(v_l2_levels >= 0);
}

/* Encode VAL as a signed leb128 sequence at P.
   Return P incremented past the encoded value.  */
static uint8_t *encode_sleb128(uint8_t *p, target_long val)
{
    int more, byte;

    do {
        byte = val & 0x7f;
        val >>= 7;
        more = !((val == 0 && (byte & 0x40) == 0)
                 || (val == -1 && (byte & 0x40) != 0));
        if (more) {
            byte |= 0x80;
        }
        *p++ = byte;
    } while (more);

    return p;
}

/* Decode a signed leb128 sequence at *PP; increment *PP past the
   decoded value.  Return the decoded value.  */
static target_long decode_sleb128(const uint8_t **pp)
{
    const uint8_t *p = *pp;
    target_long val = 0;
    int byte, shift = 0;

    do {
        byte = *p++;
        val |= (target_ulong)(byte & 0x7f) << shift;
        shift += 7;
    } while (byte & 0x80);
    if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
        val |= -(target_ulong)1 << shift;
    }

    *pp = p;
    return val;
}

/* Encode the data collected about the instructions while compiling TB.
   Place the data at BLOCK, and return the number of bytes consumed.

   The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
   which come from the target's insn_start data, followed by a uintptr_t
   which comes from the host pc of the end of the code implementing the insn.

   Each line of the table is encoded as sleb128 deltas from the previous
   line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
   That is, the first column is seeded with the guest pc, the last column
   with the host pc, and the middle columns with zeros.  */

static int encode_search(TranslationBlock *tb, uint8_t *block)
{
    uint8_t *highwater = tcg_ctx->code_gen_highwater;
    uint8_t *p = block;
    int i, j, n;

    for (i = 0, n = tb->icount; i < n; ++i) {
        target_ulong prev;

        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            if (i == 0) {
                prev = (!TARGET_TB_PCREL && j == 0 ? tb_pc(tb) : 0);
            } else {
                prev = tcg_ctx->gen_insn_data[i - 1][j];
            }
            p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
        }
        prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
        p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);

        /* Test for (pending) buffer overflow.  The assumption is that any
           one row beginning below the high water mark cannot overrun
           the buffer completely.  Thus we can test for overflow after
           encoding a row without having to check during encoding.  */
        if (unlikely(p > highwater)) {
            return -1;
        }
    }

    return p - block;
}

/* The cpu state corresponding to 'searched_pc' is restored.
 * When reset_icount is true, current TB will be interrupted and
 * icount should be recalculated.
 */
int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
                              uintptr_t searched_pc, bool reset_icount)
{
    target_ulong data[TARGET_INSN_START_WORDS];
    uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
    CPUArchState *env = cpu->env_ptr;
    const uint8_t *p = tb->tc.ptr + tb->tc.size;
    int i, j, num_insns = tb->icount;
#ifdef CONFIG_PROFILER
    TCGProfile *prof = &tcg_ctx->prof;
    int64_t ti = profile_getclock();
#endif

    searched_pc -= GETPC_ADJ;

    if (searched_pc < host_pc) {
        return -1;
    }

    memset(data, 0, sizeof(data));
    if (!TARGET_TB_PCREL) {
        data[0] = tb_pc(tb);
    }

    /* Reconstruct the stored insn data while looking for the point at
       which the end of the insn exceeds the searched_pc.  */
    for (i = 0; i < num_insns; ++i) {
        for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
            data[j] += decode_sleb128(&p);
        }
        host_pc += decode_sleb128(&p);
        if (host_pc > searched_pc) {
            goto found;
        }
    }
    return -1;

 found:
    if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
        assert(icount_enabled());
        /* Reset the cycle counter to the start of the block
           and shift if to the number of actually executed instructions */
        cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
    }
    restore_state_to_opc(env, tb, data);

#ifdef CONFIG_PROFILER
    qatomic_set(&prof->restore_time,
                prof->restore_time + profile_getclock() - ti);
    qatomic_set(&prof->restore_count, prof->restore_count + 1);
#endif
    return 0;
}

bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
{
    /*
     * The host_pc has to be in the rx region of the code buffer.
     * If it is not we will not be able to resolve it here.
     * The two cases where host_pc will not be correct are:
     *
     *  - fault during translation (instruction fetch)
     *  - fault from helper (not using GETPC() macro)
     *
     * Either way we need return early as we can't resolve it here.
     */
    if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
        TranslationBlock *tb = tcg_tb_lookup(host_pc);
        if (tb) {
            cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
            return true;
        }
    }
    return false;
}

void page_init(void)
{
    page_size_init();
    page_table_config_init();

#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    {
#ifdef HAVE_KINFO_GETVMMAP
        struct kinfo_vmentry *freep;
        int i, cnt;

        freep = kinfo_getvmmap(getpid(), &cnt);
        if (freep) {
            mmap_lock();
            for (i = 0; i < cnt; i++) {
                unsigned long startaddr, endaddr;

                startaddr = freep[i].kve_start;
                endaddr = freep[i].kve_end;
                if (h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                    } else {
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
                        endaddr = ~0ul;
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
#endif
                    }
                }
            }
            free(freep);
            mmap_unlock();
        }
#else
        FILE *f;

        last_brk = (unsigned long)sbrk(0);

        f = fopen("/compat/linux/proc/self/maps", "r");
        if (f) {
            mmap_lock();

            do {
                unsigned long startaddr, endaddr;
                int n;

                n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);

                if (n == 2 && h2g_valid(startaddr)) {
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;

                    if (h2g_valid(endaddr)) {
                        endaddr = h2g(endaddr);
                    } else {
                        endaddr = ~0ul;
                    }
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
                }
            } while (!feof(f));

            fclose(f);
            mmap_unlock();
        }
#endif
    }
#endif
}

PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc)
{
    PageDesc *pd;
    void **lp;
    int i;

    /* Level 1.  Always allocated.  */
    lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));

    /* Level 2..N-1.  */
    for (i = v_l2_levels; i > 0; i--) {
        void **p = qatomic_rcu_read(lp);

        if (p == NULL) {
            void *existing;

            if (!alloc) {
                return NULL;
            }
            p = g_new0(void *, V_L2_SIZE);
            existing = qatomic_cmpxchg(lp, NULL, p);
            if (unlikely(existing)) {
                g_free(p);
                p = existing;
            }
        }

        lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
    }

    pd = qatomic_rcu_read(lp);
    if (pd == NULL) {
        void *existing;

        if (!alloc) {
            return NULL;
        }
        pd = g_new0(PageDesc, V_L2_SIZE);
#ifndef CONFIG_USER_ONLY
        {
            int i;

            for (i = 0; i < V_L2_SIZE; i++) {
                qemu_spin_init(&pd[i].lock);
            }
        }
#endif
        existing = qatomic_cmpxchg(lp, NULL, pd);
        if (unlikely(existing)) {
#ifndef CONFIG_USER_ONLY
            {
                int i;

                for (i = 0; i < V_L2_SIZE; i++) {
                    qemu_spin_destroy(&pd[i].lock);
                }
            }
#endif
            g_free(pd);
            pd = existing;
        }
    }

    return pd + (index & (V_L2_SIZE - 1));
}

/* In user-mode page locks aren't used; mmap_lock is enough */
#ifdef CONFIG_USER_ONLY
struct page_collection *
page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
{
    return NULL;
}

void page_collection_unlock(struct page_collection *set)
{ }
#else /* !CONFIG_USER_ONLY */

#ifdef CONFIG_DEBUG_TCG

static __thread GHashTable *ht_pages_locked_debug;

static void ht_pages_locked_debug_init(void)
{
    if (ht_pages_locked_debug) {
        return;
    }
    ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
}

static bool page_is_locked(const PageDesc *pd)
{
    PageDesc *found;

    ht_pages_locked_debug_init();
    found = g_hash_table_lookup(ht_pages_locked_debug, pd);
    return !!found;
}

static void page_lock__debug(PageDesc *pd)
{
    ht_pages_locked_debug_init();
    g_assert(!page_is_locked(pd));
    g_hash_table_insert(ht_pages_locked_debug, pd, pd);
}

static void page_unlock__debug(const PageDesc *pd)
{
    bool removed;

    ht_pages_locked_debug_init();
    g_assert(page_is_locked(pd));
    removed = g_hash_table_remove(ht_pages_locked_debug, pd);
    g_assert(removed);
}

void do_assert_page_locked(const PageDesc *pd, const char *file, int line)
{
    if (unlikely(!page_is_locked(pd))) {
        error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
                     pd, file, line);
        abort();
    }
}

void assert_no_pages_locked(void)
{
    ht_pages_locked_debug_init();
    g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
}

#else /* !CONFIG_DEBUG_TCG */

static inline void page_lock__debug(const PageDesc *pd) { }
static inline void page_unlock__debug(const PageDesc *pd) { }

#endif /* CONFIG_DEBUG_TCG */

void page_lock(PageDesc *pd)
{
    page_lock__debug(pd);
    qemu_spin_lock(&pd->lock);
}

void page_unlock(PageDesc *pd)
{
    qemu_spin_unlock(&pd->lock);
    page_unlock__debug(pd);
}

static inline struct page_entry *
page_entry_new(PageDesc *pd, tb_page_addr_t index)
{
    struct page_entry *pe = g_malloc(sizeof(*pe));

    pe->index = index;
    pe->pd = pd;
    pe->locked = false;
    return pe;
}

static void page_entry_destroy(gpointer p)
{
    struct page_entry *pe = p;

    g_assert(pe->locked);
    page_unlock(pe->pd);
    g_free(pe);
}

/* returns false on success */
static bool page_entry_trylock(struct page_entry *pe)
{
    bool busy;

    busy = qemu_spin_trylock(&pe->pd->lock);
    if (!busy) {
        g_assert(!pe->locked);
        pe->locked = true;
        page_lock__debug(pe->pd);
    }
    return busy;
}

static void do_page_entry_lock(struct page_entry *pe)
{
    page_lock(pe->pd);
    g_assert(!pe->locked);
    pe->locked = true;
}

static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
{
    struct page_entry *pe = value;

    do_page_entry_lock(pe);
    return FALSE;
}

static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
{
    struct page_entry *pe = value;

    if (pe->locked) {
        pe->locked = false;
        page_unlock(pe->pd);
    }
    return FALSE;
}

/*
 * Trylock a page, and if successful, add the page to a collection.
 * Returns true ("busy") if the page could not be locked; false otherwise.
 */
static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
{
    tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
    struct page_entry *pe;
    PageDesc *pd;

    pe = g_tree_lookup(set->tree, &index);
    if (pe) {
        return false;
    }

    pd = page_find(index);
    if (pd == NULL) {
        return false;
    }

    pe = page_entry_new(pd, index);
    g_tree_insert(set->tree, &pe->index, pe);

    /*
     * If this is either (1) the first insertion or (2) a page whose index
     * is higher than any other so far, just lock the page and move on.
     */
    if (set->max == NULL || pe->index > set->max->index) {
        set->max = pe;
        do_page_entry_lock(pe);
        return false;
    }
    /*
     * Try to acquire out-of-order lock; if busy, return busy so that we acquire
     * locks in order.
     */
    return page_entry_trylock(pe);
}

static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
{
    tb_page_addr_t a = *(const tb_page_addr_t *)ap;
    tb_page_addr_t b = *(const tb_page_addr_t *)bp;

    if (a == b) {
        return 0;
    } else if (a < b) {
        return -1;
    }
    return 1;
}

/*
 * Lock a range of pages ([@start,@end[) as well as the pages of all
 * intersecting TBs.
 * Locking order: acquire locks in ascending order of page index.
 */
struct page_collection *
page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
{
    struct page_collection *set = g_malloc(sizeof(*set));
    tb_page_addr_t index;
    PageDesc *pd;

    start >>= TARGET_PAGE_BITS;
    end   >>= TARGET_PAGE_BITS;
    g_assert(start <= end);

    set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
                                page_entry_destroy);
    set->max = NULL;
    assert_no_pages_locked();

 retry:
    g_tree_foreach(set->tree, page_entry_lock, NULL);

    for (index = start; index <= end; index++) {
        TranslationBlock *tb;
        int n;

        pd = page_find(index);
        if (pd == NULL) {
            continue;
        }
        if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
            g_tree_foreach(set->tree, page_entry_unlock, NULL);
            goto retry;
        }
        assert_page_locked(pd);
        PAGE_FOR_EACH_TB(pd, tb, n) {
            if (page_trylock_add(set, tb_page_addr0(tb)) ||
                (tb_page_addr1(tb) != -1 &&
                 page_trylock_add(set, tb_page_addr1(tb)))) {
                /* drop all locks, and reacquire in order */
                g_tree_foreach(set->tree, page_entry_unlock, NULL);
                goto retry;
            }
        }
    }
    return set;
}

void page_collection_unlock(struct page_collection *set)
{
    /* entries are unlocked and freed via page_entry_destroy */
    g_tree_destroy(set->tree);
    g_free(set);
}

#endif /* !CONFIG_USER_ONLY */

/* Called with mmap_lock held for user mode emulation.  */
TranslationBlock *tb_gen_code(CPUState *cpu,
                              target_ulong pc, target_ulong cs_base,
                              uint32_t flags, int cflags)
{
    CPUArchState *env = cpu->env_ptr;
    TranslationBlock *tb, *existing_tb;
    tb_page_addr_t phys_pc;
    tcg_insn_unit *gen_code_buf;
    int gen_code_size, search_size, max_insns;
#ifdef CONFIG_PROFILER
    TCGProfile *prof = &tcg_ctx->prof;
    int64_t ti;
#endif
    void *host_pc;

    assert_memory_lock();
    qemu_thread_jit_write();

    phys_pc = get_page_addr_code_hostp(env, pc, &host_pc);

    if (phys_pc == -1) {
        /* Generate a one-shot TB with 1 insn in it */
        cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
    }

    max_insns = cflags & CF_COUNT_MASK;
    if (max_insns == 0) {
        max_insns = TCG_MAX_INSNS;
    }
    QEMU_BUILD_BUG_ON(CF_COUNT_MASK + 1 != TCG_MAX_INSNS);

 buffer_overflow:
    tb = tcg_tb_alloc(tcg_ctx);
    if (unlikely(!tb)) {
        /* flush must be done */
        tb_flush(cpu);
        mmap_unlock();
        /* Make the execution loop process the flush as soon as possible.  */
        cpu->exception_index = EXCP_INTERRUPT;
        cpu_loop_exit(cpu);
    }

    gen_code_buf = tcg_ctx->code_gen_ptr;
    tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
#if !TARGET_TB_PCREL
    tb->pc = pc;
#endif
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
    tb->trace_vcpu_dstate = *cpu->trace_dstate;
    tb_set_page_addr0(tb, phys_pc);
    tb_set_page_addr1(tb, -1);
    tcg_ctx->tb_cflags = cflags;
 tb_overflow:

#ifdef CONFIG_PROFILER
    /* includes aborted translations because of exceptions */
    qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
    ti = profile_getclock();
#endif

    gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
    if (unlikely(gen_code_size != 0)) {
        goto error_return;
    }

    tcg_func_start(tcg_ctx);

    tcg_ctx->cpu = env_cpu(env);
    gen_intermediate_code(cpu, tb, max_insns, pc, host_pc);
    assert(tb->size != 0);
    tcg_ctx->cpu = NULL;
    max_insns = tb->icount;

    trace_translate_block(tb, pc, tb->tc.ptr);

    /* generate machine code */
    tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
    tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
    tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
    if (TCG_TARGET_HAS_direct_jump) {
        tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
        tcg_ctx->tb_jmp_target_addr = NULL;
    } else {
        tcg_ctx->tb_jmp_insn_offset = NULL;
        tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
    }

#ifdef CONFIG_PROFILER
    qatomic_set(&prof->tb_count, prof->tb_count + 1);
    qatomic_set(&prof->interm_time,
                prof->interm_time + profile_getclock() - ti);
    ti = profile_getclock();
#endif

    gen_code_size = tcg_gen_code(tcg_ctx, tb, pc);
    if (unlikely(gen_code_size < 0)) {
 error_return:
        switch (gen_code_size) {
        case -1:
            /*
             * Overflow of code_gen_buffer, or the current slice of it.
             *
             * TODO: We don't need to re-do gen_intermediate_code, nor
             * should we re-do the tcg optimization currently hidden
             * inside tcg_gen_code.  All that should be required is to
             * flush the TBs, allocate a new TB, re-initialize it per
             * above, and re-do the actual code generation.
             */
            qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
                          "Restarting code generation for "
                          "code_gen_buffer overflow\n");
            goto buffer_overflow;

        case -2:
            /*
             * The code generated for the TranslationBlock is too large.
             * The maximum size allowed by the unwind info is 64k.
             * There may be stricter constraints from relocations
             * in the tcg backend.
             *
             * Try again with half as many insns as we attempted this time.
             * If a single insn overflows, there's a bug somewhere...
             */
            assert(max_insns > 1);
            max_insns /= 2;
            qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
                          "Restarting code generation with "
                          "smaller translation block (max %d insns)\n",
                          max_insns);
            goto tb_overflow;

        default:
            g_assert_not_reached();
        }
    }
    search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
    if (unlikely(search_size < 0)) {
        goto buffer_overflow;
    }
    tb->tc.size = gen_code_size;

#ifdef CONFIG_PROFILER
    qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
    qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
    qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
    qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
#endif

#ifdef DEBUG_DISAS
    if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
        qemu_log_in_addr_range(pc)) {
        FILE *logfile = qemu_log_trylock();
        if (logfile) {
            int code_size, data_size;
            const tcg_target_ulong *rx_data_gen_ptr;
            size_t chunk_start;
            int insn = 0;

            if (tcg_ctx->data_gen_ptr) {
                rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
                code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
                data_size = gen_code_size - code_size;
            } else {
                rx_data_gen_ptr = 0;
                code_size = gen_code_size;
                data_size = 0;
            }

            /* Dump header and the first instruction */
            fprintf(logfile, "OUT: [size=%d]\n", gen_code_size);
            fprintf(logfile,
                    "  -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
                    tcg_ctx->gen_insn_data[insn][0]);
            chunk_start = tcg_ctx->gen_insn_end_off[insn];
            disas(logfile, tb->tc.ptr, chunk_start);

            /*
             * Dump each instruction chunk, wrapping up empty chunks into
             * the next instruction. The whole array is offset so the
             * first entry is the beginning of the 2nd instruction.
             */
            while (insn < tb->icount) {
                size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
                if (chunk_end > chunk_start) {
                    fprintf(logfile, "  -- guest addr 0x" TARGET_FMT_lx "\n",
                            tcg_ctx->gen_insn_data[insn][0]);
                    disas(logfile, tb->tc.ptr + chunk_start,
                          chunk_end - chunk_start);
                    chunk_start = chunk_end;
                }
                insn++;
            }

            if (chunk_start < code_size) {
                fprintf(logfile, "  -- tb slow paths + alignment\n");
                disas(logfile, tb->tc.ptr + chunk_start,
                      code_size - chunk_start);
            }

            /* Finally dump any data we may have after the block */
            if (data_size) {
                int i;
                fprintf(logfile, "  data: [size=%d]\n", data_size);
                for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
                    if (sizeof(tcg_target_ulong) == 8) {
                        fprintf(logfile,
                                "0x%08" PRIxPTR ":  .quad  0x%016" TCG_PRIlx "\n",
                                (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
                    } else if (sizeof(tcg_target_ulong) == 4) {
                        fprintf(logfile,
                                "0x%08" PRIxPTR ":  .long  0x%08" TCG_PRIlx "\n",
                                (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
                    } else {
                        qemu_build_not_reached();
                    }
                }
            }
            fprintf(logfile, "\n");
            qemu_log_unlock(logfile);
        }
    }
#endif

    qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
        ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
                 CODE_GEN_ALIGN));

    /* init jump list */
    qemu_spin_init(&tb->jmp_lock);
    tb->jmp_list_head = (uintptr_t)NULL;
    tb->jmp_list_next[0] = (uintptr_t)NULL;
    tb->jmp_list_next[1] = (uintptr_t)NULL;
    tb->jmp_dest[0] = (uintptr_t)NULL;
    tb->jmp_dest[1] = (uintptr_t)NULL;

    /* init original jump addresses which have been set during tcg_gen_code() */
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 0);
    }
    if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
        tb_reset_jump(tb, 1);
    }

    /*
     * If the TB is not associated with a physical RAM page then it must be
     * a temporary one-insn TB, and we have nothing left to do. Return early
     * before attempting to link to other TBs or add to the lookup table.
     */
    if (tb_page_addr0(tb) == -1) {
        return tb;
    }

    /*
     * Insert TB into the corresponding region tree before publishing it
     * through QHT. Otherwise rewinding happened in the TB might fail to
     * lookup itself using host PC.
     */
    tcg_tb_insert(tb);

    /*
     * No explicit memory barrier is required -- tb_link_page() makes the
     * TB visible in a consistent state.
     */
    existing_tb = tb_link_page(tb, tb_page_addr0(tb), tb_page_addr1(tb));
    /* if the TB already exists, discard what we just translated */
    if (unlikely(existing_tb != tb)) {
        uintptr_t orig_aligned = (uintptr_t)gen_code_buf;

        orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
        qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
        tcg_tb_remove(tb);
        return existing_tb;
    }
    return tb;
}

/* user-mode: call with mmap_lock held */
void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
{
    TranslationBlock *tb;

    assert_memory_lock();

    tb = tcg_tb_lookup(retaddr);
    if (tb) {
        /* We can use retranslation to find the PC.  */
        cpu_restore_state_from_tb(cpu, tb, retaddr, true);
        tb_phys_invalidate(tb, -1);
    } else {
        /* The exception probably happened in a helper.  The CPU state should
           have been saved before calling it. Fetch the PC from there.  */
        CPUArchState *env = cpu->env_ptr;
        target_ulong pc, cs_base;
        tb_page_addr_t addr;
        uint32_t flags;

        cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
        addr = get_page_addr_code(env, pc);
        if (addr != -1) {
            tb_invalidate_phys_range(addr, addr + 1);
        }
    }
}

#ifndef CONFIG_USER_ONLY
/*
 * In deterministic execution mode, instructions doing device I/Os
 * must be at the end of the TB.
 *
 * Called by softmmu_template.h, with iothread mutex not held.
 */
void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
{
    TranslationBlock *tb;
    CPUClass *cc;
    uint32_t n;

    tb = tcg_tb_lookup(retaddr);
    if (!tb) {
        cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
                  (void *)retaddr);
    }
    cpu_restore_state_from_tb(cpu, tb, retaddr, true);

    /*
     * Some guests must re-execute the branch when re-executing a delay
     * slot instruction.  When this is the case, adjust icount and N
     * to account for the re-execution of the branch.
     */
    n = 1;
    cc = CPU_GET_CLASS(cpu);
    if (cc->tcg_ops->io_recompile_replay_branch &&
        cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
        cpu_neg(cpu)->icount_decr.u16.low++;
        n = 2;
    }

    /*
     * Exit the loop and potentially generate a new TB executing the
     * just the I/O insns. We also limit instrumentation to memory
     * operations only (which execute after completion) so we don't
     * double instrument the instruction.
     */
    cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;

    if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
        target_ulong pc = log_pc(cpu, tb);
        if (qemu_log_in_addr_range(pc)) {
            qemu_log("cpu_io_recompile: rewound execution of TB to "
                     TARGET_FMT_lx "\n", pc);
        }
    }

    cpu_loop_exit_noexc(cpu);
}

static void print_qht_statistics(struct qht_stats hst, GString *buf)
{
    uint32_t hgram_opts;
    size_t hgram_bins;
    char *hgram;

    if (!hst.head_buckets) {
        return;
    }
    g_string_append_printf(buf, "TB hash buckets     %zu/%zu "
                           "(%0.2f%% head buckets used)\n",
                           hst.used_head_buckets, hst.head_buckets,
                           (double)hst.used_head_buckets /
                           hst.head_buckets * 100);

    hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
    if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
        hgram_opts |= QDIST_PR_NODECIMAL;
    }
    hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
    g_string_append_printf(buf, "TB hash occupancy   %0.2f%% avg chain occ. "
                           "Histogram: %s\n",
                           qdist_avg(&hst.occupancy) * 100, hgram);
    g_free(hgram);

    hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
    hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
    if (hgram_bins > 10) {
        hgram_bins = 10;
    } else {
        hgram_bins = 0;
        hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
    }
    hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
    g_string_append_printf(buf, "TB hash avg chain   %0.3f buckets. "
                           "Histogram: %s\n",
                           qdist_avg(&hst.chain), hgram);
    g_free(hgram);
}

struct tb_tree_stats {
    size_t nb_tbs;
    size_t host_size;
    size_t target_size;
    size_t max_target_size;
    size_t direct_jmp_count;
    size_t direct_jmp2_count;
    size_t cross_page;
};

static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
{
    const TranslationBlock *tb = value;
    struct tb_tree_stats *tst = data;

    tst->nb_tbs++;
    tst->host_size += tb->tc.size;
    tst->target_size += tb->size;
    if (tb->size > tst->max_target_size) {
        tst->max_target_size = tb->size;
    }
    if (tb_page_addr1(tb) != -1) {
        tst->cross_page++;
    }
    if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
        tst->direct_jmp_count++;
        if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
            tst->direct_jmp2_count++;
        }
    }
    return false;
}

void dump_exec_info(GString *buf)
{
    struct tb_tree_stats tst = {};
    struct qht_stats hst;
    size_t nb_tbs, flush_full, flush_part, flush_elide;

    tcg_tb_foreach(tb_tree_stats_iter, &tst);
    nb_tbs = tst.nb_tbs;
    /* XXX: avoid using doubles ? */
    g_string_append_printf(buf, "Translation buffer state:\n");
    /*
     * Report total code size including the padding and TB structs;
     * otherwise users might think "-accel tcg,tb-size" is not honoured.
     * For avg host size we use the precise numbers from tb_tree_stats though.
     */
    g_string_append_printf(buf, "gen code size       %zu/%zu\n",
                           tcg_code_size(), tcg_code_capacity());
    g_string_append_printf(buf, "TB count            %zu\n", nb_tbs);
    g_string_append_printf(buf, "TB avg target size  %zu max=%zu bytes\n",
                           nb_tbs ? tst.target_size / nb_tbs : 0,
                           tst.max_target_size);
    g_string_append_printf(buf, "TB avg host size    %zu bytes "
                           "(expansion ratio: %0.1f)\n",
                           nb_tbs ? tst.host_size / nb_tbs : 0,
                           tst.target_size ?
                           (double)tst.host_size / tst.target_size : 0);
    g_string_append_printf(buf, "cross page TB count %zu (%zu%%)\n",
                           tst.cross_page,
                           nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
    g_string_append_printf(buf, "direct jump count   %zu (%zu%%) "
                           "(2 jumps=%zu %zu%%)\n",
                           tst.direct_jmp_count,
                           nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
                           tst.direct_jmp2_count,
                           nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);

    qht_statistics_init(&tb_ctx.htable, &hst);
    print_qht_statistics(hst, buf);
    qht_statistics_destroy(&hst);

    g_string_append_printf(buf, "\nStatistics:\n");
    g_string_append_printf(buf, "TB flush count      %u\n",
                           qatomic_read(&tb_ctx.tb_flush_count));
    g_string_append_printf(buf, "TB invalidate count %u\n",
                           qatomic_read(&tb_ctx.tb_phys_invalidate_count));

    tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
    g_string_append_printf(buf, "TLB full flushes    %zu\n", flush_full);
    g_string_append_printf(buf, "TLB partial flushes %zu\n", flush_part);
    g_string_append_printf(buf, "TLB elided flushes  %zu\n", flush_elide);
    tcg_dump_info(buf);
}

#else /* CONFIG_USER_ONLY */

void cpu_interrupt(CPUState *cpu, int mask)
{
    g_assert(qemu_mutex_iothread_locked());
    cpu->interrupt_request |= mask;
    qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
}

/*
 * Walks guest process memory "regions" one by one
 * and calls callback function 'fn' for each region.
 */
struct walk_memory_regions_data {
    walk_memory_regions_fn fn;
    void *priv;
    target_ulong start;
    int prot;
};

static int walk_memory_regions_end(struct walk_memory_regions_data *data,
                                   target_ulong end, int new_prot)
{
    if (data->start != -1u) {
        int rc = data->fn(data->priv, data->start, end, data->prot);
        if (rc != 0) {
            return rc;
        }
    }

    data->start = (new_prot ? end : -1u);
    data->prot = new_prot;

    return 0;
}

static int walk_memory_regions_1(struct walk_memory_regions_data *data,
                                 target_ulong base, int level, void **lp)
{
    target_ulong pa;
    int i, rc;

    if (*lp == NULL) {
        return walk_memory_regions_end(data, base, 0);
    }

    if (level == 0) {
        PageDesc *pd = *lp;

        for (i = 0; i < V_L2_SIZE; ++i) {
            int prot = pd[i].flags;

            pa = base | (i << TARGET_PAGE_BITS);
            if (prot != data->prot) {
                rc = walk_memory_regions_end(data, pa, prot);
                if (rc != 0) {
                    return rc;
                }
            }
        }
    } else {
        void **pp = *lp;

        for (i = 0; i < V_L2_SIZE; ++i) {
            pa = base | ((target_ulong)i <<
                (TARGET_PAGE_BITS + V_L2_BITS * level));
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
            if (rc != 0) {
                return rc;
            }
        }
    }

    return 0;
}

int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
    struct walk_memory_regions_data data;
    uintptr_t i, l1_sz = v_l1_size;

    data.fn = fn;
    data.priv = priv;
    data.start = -1u;
    data.prot = 0;

    for (i = 0; i < l1_sz; i++) {
        target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
        int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
        if (rc != 0) {
            return rc;
        }
    }

    return walk_memory_regions_end(&data, 0, 0);
}

static int dump_region(void *priv, target_ulong start,
    target_ulong end, unsigned long prot)
{
    FILE *f = (FILE *)priv;

    (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
        " "TARGET_FMT_lx" %c%c%c\n",
        start, end, end - start,
        ((prot & PAGE_READ) ? 'r' : '-'),
        ((prot & PAGE_WRITE) ? 'w' : '-'),
        ((prot & PAGE_EXEC) ? 'x' : '-'));

    return 0;
}

/* dump memory mappings */
void page_dump(FILE *f)
{
    const int length = sizeof(target_ulong) * 2;
    (void) fprintf(f, "%-*s %-*s %-*s %s\n",
            length, "start", length, "end", length, "size", "prot");
    walk_memory_regions(f, dump_region);
}

int page_get_flags(target_ulong address)
{
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        return 0;
    }
    return p->flags;
}

/*
 * Allow the target to decide if PAGE_TARGET_[12] may be reset.
 * By default, they are not kept.
 */
#ifndef PAGE_TARGET_STICKY
#define PAGE_TARGET_STICKY  0
#endif
#define PAGE_STICKY  (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)

/* Modify the flags of a page and invalidate the code if necessary.
   The flag PAGE_WRITE_ORG is positioned automatically depending
   on PAGE_WRITE.  The mmap_lock should already be held.  */
void page_set_flags(target_ulong start, target_ulong end, int flags)
{
    target_ulong addr, len;
    bool reset_target_data;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
    assert(end - 1 <= GUEST_ADDR_MAX);
    assert(start < end);
    /* Only set PAGE_ANON with new mappings. */
    assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
    assert_memory_lock();

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    if (flags & PAGE_WRITE) {
        flags |= PAGE_WRITE_ORG;
    }
    reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET);
    flags &= ~PAGE_RESET;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, true);

        /* If the write protection bit is set, then we invalidate
           the code inside.  */
        if (!(p->flags & PAGE_WRITE) &&
            (flags & PAGE_WRITE) &&
            p->first_tb) {
            tb_invalidate_phys_page(addr, 0);
        }
        if (reset_target_data) {
            g_free(p->target_data);
            p->target_data = NULL;
            p->flags = flags;
        } else {
            /* Using mprotect on a page does not change sticky bits. */
            p->flags = (p->flags & PAGE_STICKY) | flags;
        }
    }
}

void page_reset_target_data(target_ulong start, target_ulong end)
{
#ifdef TARGET_PAGE_DATA_SIZE
    target_ulong addr, len;

    /*
     * This function should never be called with addresses outside the
     * guest address space.  If this assert fires, it probably indicates
     * a missing call to h2g_valid.
     */
    assert(end - 1 <= GUEST_ADDR_MAX);
    assert(start < end);
    assert_memory_lock();

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);

        g_free(p->target_data);
        p->target_data = NULL;
    }
#endif
}

#ifdef TARGET_PAGE_DATA_SIZE
void *page_get_target_data(target_ulong address)
{
    PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
    return p ? p->target_data : NULL;
}

void *page_alloc_target_data(target_ulong address)
{
    PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
    void *ret = NULL;

    if (p->flags & PAGE_VALID) {
        ret = p->target_data;
        if (!ret) {
            p->target_data = ret = g_malloc0(TARGET_PAGE_DATA_SIZE);
        }
    }
    return ret;
}
#endif /* TARGET_PAGE_DATA_SIZE */

int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

    /* This function should never be called with addresses outside the
       guest address space.  If this assert fires, it probably indicates
       a missing call to h2g_valid.  */
    if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
        assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
    }

    if (len == 0) {
        return 0;
    }
    if (start + len - 1 < start) {
        /* We've wrapped around.  */
        return -1;
    }

    /* must do before we loose bits in the next step */
    end = TARGET_PAGE_ALIGN(start + len);
    start = start & TARGET_PAGE_MASK;

    for (addr = start, len = end - start;
         len != 0;
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if (!p) {
            return -1;
        }
        if (!(p->flags & PAGE_VALID)) {
            return -1;
        }

        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
            return -1;
        }
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG)) {
                return -1;
            }
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0)) {
                    return -1;
                }
            }
        }
    }
    return 0;
}

void page_protect(tb_page_addr_t page_addr)
{
    target_ulong addr;
    PageDesc *p;
    int prot;

    p = page_find(page_addr >> TARGET_PAGE_BITS);
    if (p && (p->flags & PAGE_WRITE)) {
        /*
         * Force the host page as non writable (writes will have a page fault +
         * mprotect overhead).
         */
        page_addr &= qemu_host_page_mask;
        prot = 0;
        for (addr = page_addr; addr < page_addr + qemu_host_page_size;
             addr += TARGET_PAGE_SIZE) {

            p = page_find(addr >> TARGET_PAGE_BITS);
            if (!p) {
                continue;
            }
            prot |= p->flags;
            p->flags &= ~PAGE_WRITE;
        }
        mprotect(g2h_untagged(page_addr), qemu_host_page_size,
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
    }
}

/* called from signal handler: invalidate the code and unprotect the
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 * and 2 if it was handled but the caller must cause the TB to be
 * immediately exited. (We can only return 2 if the 'pc' argument is
 * non-zero.)
 */
int page_unprotect(target_ulong address, uintptr_t pc)
{
    unsigned int prot;
    bool current_tb_invalidated;
    PageDesc *p;
    target_ulong host_start, host_end, addr;

    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

    p = page_find(address >> TARGET_PAGE_BITS);
    if (!p) {
        mmap_unlock();
        return 0;
    }

    /* if the page was really writable, then we change its
       protection back to writable */
    if (p->flags & PAGE_WRITE_ORG) {
        current_tb_invalidated = false;
        if (p->flags & PAGE_WRITE) {
            /* If the page is actually marked WRITE then assume this is because
             * this thread raced with another one which got here first and
             * set the page to PAGE_WRITE and did the TB invalidate for us.
             */
#ifdef TARGET_HAS_PRECISE_SMC
            TranslationBlock *current_tb = tcg_tb_lookup(pc);
            if (current_tb) {
                current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
            }
#endif
        } else {
            host_start = address & qemu_host_page_mask;
            host_end = host_start + qemu_host_page_size;

            prot = 0;
            for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
                p = page_find(addr >> TARGET_PAGE_BITS);
                p->flags |= PAGE_WRITE;
                prot |= p->flags;

                /* and since the content will be modified, we must invalidate
                   the corresponding translated code. */
                current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
            }
            mprotect((void *)g2h_untagged(host_start), qemu_host_page_size,
                     prot & PAGE_BITS);
        }
        mmap_unlock();
        /* If current TB was invalidated return to main loop */
        return current_tb_invalidated ? 2 : 1;
    }
    mmap_unlock();
    return 0;
}
#endif /* CONFIG_USER_ONLY */

/*
 * Called by generic code at e.g. cpu reset after cpu creation,
 * therefore we must be prepared to allocate the jump cache.
 */
void tcg_flush_jmp_cache(CPUState *cpu)
{
    CPUJumpCache *jc = cpu->tb_jmp_cache;

    if (likely(jc)) {
        for (int i = 0; i < TB_JMP_CACHE_SIZE; i++) {
            qatomic_set(&jc->array[i].tb, NULL);
        }
    } else {
        /* This should happen once during realize, and thus never race. */
        jc = g_new0(CPUJumpCache, 1);
        jc = qatomic_xchg(&cpu->tb_jmp_cache, jc);
        assert(jc == NULL);
    }
}

/* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
void tcg_flush_softmmu_tlb(CPUState *cs)
{
#ifdef CONFIG_SOFTMMU
    tlb_flush(cs);
#endif
}