aboutsummaryrefslogtreecommitdiff
path: root/accel/hvf/hvf-accel-ops.c
blob: 4f75927a8efdb197e382095dcc987b33ae3038c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/*
 * Copyright 2008 IBM Corporation
 *           2008 Red Hat, Inc.
 * Copyright 2011 Intel Corporation
 * Copyright 2016 Veertu, Inc.
 * Copyright 2017 The Android Open Source Project
 *
 * QEMU Hypervisor.framework support
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * This file contain code under public domain from the hvdos project:
 * https://github.com/mist64/hvdos
 *
 * Parts Copyright (c) 2011 NetApp, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "exec/address-spaces.h"
#include "exec/exec-all.h"
#include "sysemu/cpus.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/runstate.h"
#include "qemu/guest-random.h"

HVFState *hvf_state;

#ifdef __aarch64__
#define HV_VM_DEFAULT NULL
#endif

/* Memory slots */

hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
{
    hvf_slot *slot;
    int x;
    for (x = 0; x < hvf_state->num_slots; ++x) {
        slot = &hvf_state->slots[x];
        if (slot->size && start < (slot->start + slot->size) &&
            (start + size) > slot->start) {
            return slot;
        }
    }
    return NULL;
}

struct mac_slot {
    int present;
    uint64_t size;
    uint64_t gpa_start;
    uint64_t gva;
};

struct mac_slot mac_slots[32];

static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
{
    struct mac_slot *macslot;
    hv_return_t ret;

    macslot = &mac_slots[slot->slot_id];

    if (macslot->present) {
        if (macslot->size != slot->size) {
            macslot->present = 0;
            ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
            assert_hvf_ok(ret);
        }
    }

    if (!slot->size) {
        return 0;
    }

    macslot->present = 1;
    macslot->gpa_start = slot->start;
    macslot->size = slot->size;
    ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
    assert_hvf_ok(ret);
    return 0;
}

static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
{
    hvf_slot *mem;
    MemoryRegion *area = section->mr;
    bool writeable = !area->readonly && !area->rom_device;
    hv_memory_flags_t flags;

    if (!memory_region_is_ram(area)) {
        if (writeable) {
            return;
        } else if (!memory_region_is_romd(area)) {
            /*
             * If the memory device is not in romd_mode, then we actually want
             * to remove the hvf memory slot so all accesses will trap.
             */
             add = false;
        }
    }

    mem = hvf_find_overlap_slot(
            section->offset_within_address_space,
            int128_get64(section->size));

    if (mem && add) {
        if (mem->size == int128_get64(section->size) &&
            mem->start == section->offset_within_address_space &&
            mem->mem == (memory_region_get_ram_ptr(area) +
            section->offset_within_region)) {
            return; /* Same region was attempted to register, go away. */
        }
    }

    /* Region needs to be reset. set the size to 0 and remap it. */
    if (mem) {
        mem->size = 0;
        if (do_hvf_set_memory(mem, 0)) {
            error_report("Failed to reset overlapping slot");
            abort();
        }
    }

    if (!add) {
        return;
    }

    if (area->readonly ||
        (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
        flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
    } else {
        flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
    }

    /* Now make a new slot. */
    int x;

    for (x = 0; x < hvf_state->num_slots; ++x) {
        mem = &hvf_state->slots[x];
        if (!mem->size) {
            break;
        }
    }

    if (x == hvf_state->num_slots) {
        error_report("No free slots");
        abort();
    }

    mem->size = int128_get64(section->size);
    mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
    mem->start = section->offset_within_address_space;
    mem->region = area;

    if (do_hvf_set_memory(mem, flags)) {
        error_report("Error registering new memory slot");
        abort();
    }
}

static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
    if (!cpu->vcpu_dirty) {
        hvf_get_registers(cpu);
        cpu->vcpu_dirty = true;
    }
}

static void hvf_cpu_synchronize_state(CPUState *cpu)
{
    if (!cpu->vcpu_dirty) {
        run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
    }
}

static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
                                             run_on_cpu_data arg)
{
    /* QEMU state is the reference, push it to HVF now and on next entry */
    cpu->vcpu_dirty = true;
}

static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
{
    run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}

static void hvf_cpu_synchronize_post_init(CPUState *cpu)
{
    run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}

static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
{
    run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}

static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
{
    hvf_slot *slot;

    slot = hvf_find_overlap_slot(
            section->offset_within_address_space,
            int128_get64(section->size));

    /* protect region against writes; begin tracking it */
    if (on) {
        slot->flags |= HVF_SLOT_LOG;
        hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
                      HV_MEMORY_READ | HV_MEMORY_EXEC);
    /* stop tracking region*/
    } else {
        slot->flags &= ~HVF_SLOT_LOG;
        hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
                      HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
    }
}

static void hvf_log_start(MemoryListener *listener,
                          MemoryRegionSection *section, int old, int new)
{
    if (old != 0) {
        return;
    }

    hvf_set_dirty_tracking(section, 1);
}

static void hvf_log_stop(MemoryListener *listener,
                         MemoryRegionSection *section, int old, int new)
{
    if (new != 0) {
        return;
    }

    hvf_set_dirty_tracking(section, 0);
}

static void hvf_log_sync(MemoryListener *listener,
                         MemoryRegionSection *section)
{
    /*
     * sync of dirty pages is handled elsewhere; just make sure we keep
     * tracking the region.
     */
    hvf_set_dirty_tracking(section, 1);
}

static void hvf_region_add(MemoryListener *listener,
                           MemoryRegionSection *section)
{
    hvf_set_phys_mem(section, true);
}

static void hvf_region_del(MemoryListener *listener,
                           MemoryRegionSection *section)
{
    hvf_set_phys_mem(section, false);
}

static MemoryListener hvf_memory_listener = {
    .priority = 10,
    .region_add = hvf_region_add,
    .region_del = hvf_region_del,
    .log_start = hvf_log_start,
    .log_stop = hvf_log_stop,
    .log_sync = hvf_log_sync,
};

static void dummy_signal(int sig)
{
}

bool hvf_allowed;

static int hvf_accel_init(MachineState *ms)
{
    int x;
    hv_return_t ret;
    HVFState *s;

    ret = hv_vm_create(HV_VM_DEFAULT);
    assert_hvf_ok(ret);

    s = g_new0(HVFState, 1);

    s->num_slots = 32;
    for (x = 0; x < s->num_slots; ++x) {
        s->slots[x].size = 0;
        s->slots[x].slot_id = x;
    }

    hvf_state = s;
    memory_listener_register(&hvf_memory_listener, &address_space_memory);

    return hvf_arch_init();
}

static void hvf_accel_class_init(ObjectClass *oc, void *data)
{
    AccelClass *ac = ACCEL_CLASS(oc);
    ac->name = "HVF";
    ac->init_machine = hvf_accel_init;
    ac->allowed = &hvf_allowed;
}

static const TypeInfo hvf_accel_type = {
    .name = TYPE_HVF_ACCEL,
    .parent = TYPE_ACCEL,
    .class_init = hvf_accel_class_init,
};

static void hvf_type_init(void)
{
    type_register_static(&hvf_accel_type);
}

type_init(hvf_type_init);

static void hvf_vcpu_destroy(CPUState *cpu)
{
    hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
    assert_hvf_ok(ret);

    hvf_arch_vcpu_destroy(cpu);
    g_free(cpu->hvf);
    cpu->hvf = NULL;
}

static int hvf_init_vcpu(CPUState *cpu)
{
    int r;

    cpu->hvf = g_malloc0(sizeof(*cpu->hvf));

    /* init cpu signals */
    sigset_t set;
    struct sigaction sigact;

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = dummy_signal;
    sigaction(SIG_IPI, &sigact, NULL);

    pthread_sigmask(SIG_BLOCK, NULL, &set);
    sigdelset(&set, SIG_IPI);

#ifdef __aarch64__
    r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL);
#else
    r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
#endif
    cpu->vcpu_dirty = 1;
    assert_hvf_ok(r);

    return hvf_arch_init_vcpu(cpu);
}

/*
 * The HVF-specific vCPU thread function. This one should only run when the host
 * CPU supports the VMX "unrestricted guest" feature.
 */
static void *hvf_cpu_thread_fn(void *arg)
{
    CPUState *cpu = arg;

    int r;

    assert(hvf_enabled());

    rcu_register_thread();

    qemu_mutex_lock_iothread();
    qemu_thread_get_self(cpu->thread);

    cpu->thread_id = qemu_get_thread_id();
    cpu->can_do_io = 1;
    current_cpu = cpu;

    hvf_init_vcpu(cpu);

    /* signal CPU creation */
    cpu_thread_signal_created(cpu);
    qemu_guest_random_seed_thread_part2(cpu->random_seed);

    do {
        if (cpu_can_run(cpu)) {
            r = hvf_vcpu_exec(cpu);
            if (r == EXCP_DEBUG) {
                cpu_handle_guest_debug(cpu);
            }
        }
        qemu_wait_io_event(cpu);
    } while (!cpu->unplug || cpu_can_run(cpu));

    hvf_vcpu_destroy(cpu);
    cpu_thread_signal_destroyed(cpu);
    qemu_mutex_unlock_iothread();
    rcu_unregister_thread();
    return NULL;
}

static void hvf_start_vcpu_thread(CPUState *cpu)
{
    char thread_name[VCPU_THREAD_NAME_SIZE];

    /*
     * HVF currently does not support TCG, and only runs in
     * unrestricted-guest mode.
     */
    assert(hvf_enabled());

    cpu->thread = g_malloc0(sizeof(QemuThread));
    cpu->halt_cond = g_malloc0(sizeof(QemuCond));
    qemu_cond_init(cpu->halt_cond);

    snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
             cpu->cpu_index);
    qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
                       cpu, QEMU_THREAD_JOINABLE);
}

static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
{
    AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);

    ops->create_vcpu_thread = hvf_start_vcpu_thread;
    ops->kick_vcpu_thread = hvf_kick_vcpu_thread;

    ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
    ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
    ops->synchronize_state = hvf_cpu_synchronize_state;
    ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
};
static const TypeInfo hvf_accel_ops_type = {
    .name = ACCEL_OPS_NAME("hvf"),

    .parent = TYPE_ACCEL_OPS,
    .class_init = hvf_accel_ops_class_init,
    .abstract = true,
};
static void hvf_accel_ops_register_types(void)
{
    type_register_static(&hvf_accel_ops_type);
}
type_init(hvf_accel_ops_register_types);