aboutsummaryrefslogtreecommitdiff
path: root/util/qemu-coroutine.c
AgeCommit message (Collapse)Author
2018-09-25block: Add missing locking in bdrv_co_drain_bh_cb()Kevin Wolf
bdrv_do_drained_begin/end() assume that they are called with the AioContext lock of bs held. If we call drain functions from a coroutine with the AioContext lock held, we yield and schedule a BH to move out of coroutine context. This means that the lock for the home context of the coroutine is released and must be re-acquired in the bottom half. Signed-off-by: Kevin Wolf <kwolf@redhat.com> Reviewed-by: Max Reitz <mreitz@redhat.com>
2018-03-27coroutine: avoid co_queue_wakeup recursionStefan Hajnoczi
qemu_aio_coroutine_enter() is (indirectly) called recursively when processing co_queue_wakeup. This can lead to stack exhaustion. This patch rewrites co_queue_wakeup in an iterative fashion (instead of recursive) with bounded memory usage to prevent stack exhaustion. qemu_co_queue_run_restart() is inlined into qemu_aio_coroutine_enter() and the qemu_coroutine_enter() call is turned into a loop to avoid recursion. There is one change that is worth mentioning: Previously, when coroutine A queued coroutine B, qemu_co_queue_run_restart() entered coroutine B from coroutine A. If A was terminating then it would still stay alive until B yielded. After this patch B is entered by A's parent so that a A can be deleted immediately if it is terminating. It is safe to make this change since B could never interact with A if it was terminating anyway. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20180322152834.12656-3-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-11-21coroutine: abort if we try to schedule or enter a pending coroutineJeff Cody
The previous patch fixed a race condition, in which there were coroutines being executing doubly, or after coroutine deletion. We can detect common scenarios when this happens, and print an error message and abort before we corrupt memory / data, or segfault. This patch will abort if an attempt to enter a coroutine is made while it is currently pending execution, either in a specific AioContext bh, or pending execution via a timer. It will also abort if a coroutine is scheduled, before a prior scheduled run has occurred. We cannot rely on the existing co->caller check for recursive re-entry to catch this, as the coroutine may run and exit with COROUTINE_TERMINATE before the scheduled coroutine executes. (This is the scenario that was occurring and fixed in the previous patch). This patch also re-orders the Coroutine struct elements in an attempt to optimize caching. Signed-off-by: Jeff Cody <jcody@redhat.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-06-07coroutine-lock: do not touch coroutine after another one has been enteredRoman Pen
Submission of requests on linux aio is a bit tricky and can lead to requests completions on submission path: 44713c9e8547 ("linux-aio: Handle io_submit() failure gracefully") 0ed93d84edab ("linux-aio: process completions from ioq_submit()") That means that any coroutine which has been yielded in order to wait for completion can be resumed from submission path and be eventually terminated (freed). The following use-after-free crash was observed when IO throttling was enabled: Program received signal SIGSEGV, Segmentation fault. [Switching to Thread 0x7f5813dff700 (LWP 56417)] virtqueue_unmap_sg (elem=0x7f5804009a30, len=1, vq=<optimized out>) at virtio.c:252 (gdb) bt #0 virtqueue_unmap_sg (elem=0x7f5804009a30, len=1, vq=<optimized out>) at virtio.c:252 ^^^^^^^^^^^^^^ remember the address #1 virtqueue_fill (vq=0x5598b20d21b0, elem=0x7f5804009a30, len=1, idx=0) at virtio.c:282 #2 virtqueue_push (vq=0x5598b20d21b0, elem=elem@entry=0x7f5804009a30, len=<optimized out>) at virtio.c:308 #3 virtio_blk_req_complete (req=req@entry=0x7f5804009a30, status=status@entry=0 '\000') at virtio-blk.c:61 #4 virtio_blk_rw_complete (opaque=<optimized out>, ret=0) at virtio-blk.c:126 #5 blk_aio_complete (acb=0x7f58040068d0) at block-backend.c:923 #6 coroutine_trampoline (i0=<optimized out>, i1=<optimized out>) at coroutine-ucontext.c:78 (gdb) p * elem $8 = {index = 77, out_num = 2, in_num = 1, in_addr = 0x7f5804009ad8, out_addr = 0x7f5804009ae0, in_sg = 0x0, out_sg = 0x7f5804009a50} ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 'in_sg' and 'out_sg' are invalid. e.g. it is impossible that 'in_sg' is zero, instead its value must be equal to: (gdb) p/x 0x7f5804009ad8 + sizeof(elem->in_addr[0]) + 2 * sizeof(elem->out_addr[0]) $26 = 0x7f5804009af0 Seems 'elem' was corrupted. Meanwhile another thread raised an abort: Thread 12 (Thread 0x7f57f2ffd700 (LWP 56426)): #0 raise () from /lib/x86_64-linux-gnu/libc.so.6 #1 abort () from /lib/x86_64-linux-gnu/libc.so.6 #2 qemu_coroutine_enter (co=0x7f5804009af0) at qemu-coroutine.c:113 #3 qemu_co_queue_run_restart (co=0x7f5804009a30) at qemu-coroutine-lock.c:60 #4 qemu_coroutine_enter (co=0x7f5804009a30) at qemu-coroutine.c:119 ^^^^^^^^^^^^^^^^^^ WTF?? this is equal to elem from crashed thread #5 qemu_co_queue_run_restart (co=0x7f57e7f16ae0) at qemu-coroutine-lock.c:60 #6 qemu_coroutine_enter (co=0x7f57e7f16ae0) at qemu-coroutine.c:119 #7 qemu_co_queue_run_restart (co=0x7f5807e112a0) at qemu-coroutine-lock.c:60 #8 qemu_coroutine_enter (co=0x7f5807e112a0) at qemu-coroutine.c:119 #9 qemu_co_queue_run_restart (co=0x7f5807f17820) at qemu-coroutine-lock.c:60 #10 qemu_coroutine_enter (co=0x7f5807f17820) at qemu-coroutine.c:119 #11 qemu_co_queue_run_restart (co=0x7f57e7f18e10) at qemu-coroutine-lock.c:60 #12 qemu_coroutine_enter (co=0x7f57e7f18e10) at qemu-coroutine.c:119 #13 qemu_co_enter_next (queue=queue@entry=0x5598b1e742d0) at qemu-coroutine-lock.c:106 #14 timer_cb (blk=0x5598b1e74280, is_write=<optimized out>) at throttle-groups.c:419 Crash can be explained by access of 'co' object from the loop inside qemu_co_queue_run_restart(): while ((next = QSIMPLEQ_FIRST(&co->co_queue_wakeup))) { QSIMPLEQ_REMOVE_HEAD(&co->co_queue_wakeup, co_queue_next); ^^^^^^^^^^^^^^^^^^^^ on each iteration 'co' is accessed, but 'co' can be already freed qemu_coroutine_enter(next); } When 'next' coroutine is resumed (entered) it can in its turn resume 'co', and eventually free it. That's why we see 'co' (which was freed) has the same address as 'elem' from the first backtrace. The fix is obvious: use temporary queue and do not touch coroutine after first qemu_coroutine_enter() is invoked. The issue is quite rare and happens every ~12 hours on very high IO and CPU load (building linux kernel with -j512 inside guest) when IO throttling is enabled. With the fix applied guest is running ~35 hours and is still alive so far. Signed-off-by: Roman Pen <roman.penyaev@profitbricks.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Message-id: 20170601160847.23720-1-roman.penyaev@profitbricks.com Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Fam Zheng <famz@redhat.com> Cc: Stefan Hajnoczi <stefanha@redhat.com> Cc: Kevin Wolf <kwolf@redhat.com> Cc: qemu-devel@nongnu.org Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-04-11coroutine: Extract qemu_aio_coroutine_enterFam Zheng
It's a variant of qemu_coroutine_enter with an explicit AioContext parameter. Signed-off-by: Fam Zheng <famz@redhat.com> Acked-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Kevin Wolf <kwolf@redhat.com>
2017-02-21coroutine-lock: add limited spinning to CoMutexPaolo Bonzini
Running a very small critical section on pthread_mutex_t and CoMutex shows that pthread_mutex_t is much faster because it doesn't actually go to sleep. What happens is that the critical section is shorter than the latency of entering the kernel and thus FUTEX_WAIT always fails. With CoMutex there is no such latency but you still want to avoid wait and wakeup. So introduce it artificially. This only works with one waiters; because CoMutex is fair, it will always have more waits and wakeups than a pthread_mutex_t. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Message-id: 20170213181244.16297-3-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-02-21aio: introduce aio_co_schedule and aio_co_wakePaolo Bonzini
aio_co_wake provides the infrastructure to start a coroutine on a "home" AioContext. It will be used by CoMutex and CoQueue, so that coroutines don't jump from one context to another when they go to sleep on a mutex or waitqueue. However, it can also be used as a more efficient alternative to one-shot bottom halves, and saves the effort of tracking which AioContext a coroutine is running on. aio_co_schedule is the part of aio_co_wake that starts a coroutine on a remove AioContext, but it is also useful to implement e.g. bdrv_set_aio_context callbacks. The implementation of aio_co_schedule is based on a lock-free multiple-producer, single-consumer queue. The multiple producers use cmpxchg to add to a LIFO stack. The consumer (a per-AioContext bottom half) grabs all items added so far, inverts the list to make it FIFO, and goes through it one item at a time until it's empty. The data structure was inspired by OSv, which uses it in the very code we'll "port" to QEMU for the thread-safe CoMutex. Most of the new code is really tests. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Message-id: 20170213135235.12274-3-pbonzini@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-01-09coroutine: Introduce qemu_coroutine_enter_if_inactive()Kevin Wolf
In the context of asynchronous work, if we have a worker coroutine that didn't yield, the parent coroutine cannot be reentered because it hasn't yielded yet. In this case we don't even have to reenter the parent because it will see that the work is already done and won't even yield. Signed-off-by: Kevin Wolf <kwolf@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Alberto Garcia <berto@igalia.com>
2016-09-28coroutine: add qemu_coroutine_entered() functionStefan Hajnoczi
See the doc comments for a description of this new coroutine API. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Message-id: 1474989516-18255-2-git-send-email-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-09-05coroutine: Assert that no locks are held on terminationKevin Wolf
A coroutine that takes a lock must also release it again. If the coroutine terminates without having released all its locks, it's buggy and we'll probably run into a deadlock sooner or later. Make sure that we don't get such cases. Signed-off-by: Kevin Wolf <kwolf@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
2016-07-13coroutine: move entry argument to qemu_coroutine_createPaolo Bonzini
In practice the entry argument is always known at creation time, and it is confusing that sometimes qemu_coroutine_enter is used with a non-NULL argument to re-enter a coroutine (this happens in block/sheepdog.c and tests/test-coroutine.c). So pass the opaque value at creation time, for consistency with e.g. aio_bh_new. Mostly done with the following semantic patch: @ entry1 @ expression entry, arg, co; @@ - co = qemu_coroutine_create(entry); + co = qemu_coroutine_create(entry, arg); ... - qemu_coroutine_enter(co, arg); + qemu_coroutine_enter(co); @ entry2 @ expression entry, arg; identifier co; @@ - Coroutine *co = qemu_coroutine_create(entry); + Coroutine *co = qemu_coroutine_create(entry, arg); ... - qemu_coroutine_enter(co, arg); + qemu_coroutine_enter(co); @ entry3 @ expression entry, arg; @@ - qemu_coroutine_enter(qemu_coroutine_create(entry), arg); + qemu_coroutine_enter(qemu_coroutine_create(entry, arg)); @ reentry @ expression co; @@ - qemu_coroutine_enter(co, NULL); + qemu_coroutine_enter(co); except for the aforementioned few places where the semantic patch stumbled (as expected) and for test_co_queue, which would otherwise produce an uninitialized variable warning. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2016-07-13coroutine: use QSIMPLEQ instead of QTAILQPaolo Bonzini
CoQueue do not need to remove any element but the head of the list; processing is always strictly FIFO. Therefore, the simpler singly-linked QSIMPLEQ can be used instead. Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fam Zheng <famz@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2016-02-04util: Clean up includesPeter Maydell
Clean up includes so that osdep.h is included first and headers which it implies are not included manually. This commit was created with scripts/clean-includes. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1454089805-5470-6-git-send-email-peter.maydell@linaro.org
2015-10-20coroutine: move into libqemuutil.a libraryDaniel P. Berrange
The coroutine files are currently referenced by the block-obj-y variable. The coroutine functionality though is already used by more than just the block code. eg migration code uses coroutine yield. In the future the I/O channel code will also use the coroutine yield functionality. Since the coroutine code is nicely self-contained it can be easily built as part of the libqemuutil.a library, making it widely available. The headers are also moved into include/qemu, instead of the include/block directory, since they are now part of the util codebase, and the impl was never in the block/ directory either. Signed-off-by: Daniel P. Berrange <berrange@redhat.com>