Age | Commit message (Collapse) | Author |
|
Call kvm_on_sigbus_vcpu asynchronously from the VCPU thread.
Information for the SIGBUS can be stored in thread-local variables
and processed later in kvm_cpu_exec.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Build it on kvm_arch_on_sigbus_vcpu instead. They do the same
for "action optional" SIGBUSes, and the main thread should never get
"action required" SIGBUSes because it blocks the signal.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This patch extends support for the `dump-guest-memory` command to the
32-bit PowerPC architecture. It relies on the assumption that a 64-bit
guest will not dump a 32-bit core file (and vice versa).
[dwg: I suspect this patch won't cover all cases, in particular a
32-bit machine type on a 64-bit qemu build. However, it does strictly
more than what we had before, so might as well apply as a starting
point]
Signed-off-by: Mike Nawrocki <michael.nawrocki@gtri.gatech.edu>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
mcrxrx: Move to CR from XER Extended
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Add helper_div_compute_ov() in the int_helper for updating the overflow
flags.
For Divide Word:
SO, OV, and OV32 bits reflects overflow of the 32-bit result
For Divide DoubleWord:
SO, OV, and OV32 bits reflects overflow of the 64-bit result
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
For Multiply Word:
SO, OV, and OV32 bits reflects overflow of the 32-bit result
For Multiply DoubleWord:
SO, OV, and OV32 bits reflects overflow of the 64-bit result
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
* SO and OV reflects overflow of the 64-bit result in 64-bit mode and
overflow of the low-order 32-bit result in 32-bit mode
* OV32 reflects overflow of the low-order 32-bit independent of the mode
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Adds routine to compute ca32 - gen_op_arith_compute_ca32
For 64-bit mode use the compute ca32 routine. While for 32-bit mode, CA
and CA32 will have same value.
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
POWER ISA 3.0 adds CA32 and OV32 status in 64-bit mode. Add the flags
and corresponding defines.
Moreover, CA32 is updated when CA is updated and OV32 is updated when OV
is updated.
Arithmetic instructions:
* Addition and Substractions:
addic, addic., subfic, addc, subfc, adde, subfe, addme, subfme,
addze, and subfze always updates CA and CA32.
=> CA reflects the carry out of bit 0 in 64-bit mode and out of
bit 32 in 32-bit mode.
=> CA32 reflects the carry out of bit 32 independent of the
mode.
=> SO and OV reflects overflow of the 64-bit result in 64-bit
mode and overflow of the low-order 32-bit result in 32-bit
mode
=> OV32 reflects overflow of the low-order 32-bit independent of
the mode
* Multiply Low and Divide:
For mulld, divd, divde, divdu and divdeu: SO, OV, and OV32 bits
reflects overflow of the 64-bit result
For mullw, divw, divwe, divwu and divweu: SO, OV, and OV32 bits
reflects overflow of the 32-bit result
* Negate with OE=1 (nego)
For 64-bit mode if the register RA contains
0x8000_0000_0000_0000, OV and OV32 are set to 1.
For 32-bit mode if the register RA contains 0x8000_0000, OV and
OV32 are set to 1.
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
SDR_64_HTABORG, which indicates the bits of the SDR1 register to use for
the base of a 64-bit machine's hashed page table (HPT) isn't correct. It
includes the top 46 bits of the register, but in fact the top 4 bits must
be zero (according to the ISA v2.07). No actual implementation has
supported close to 2^60 bytes of physical address space, so it's kind of
irrelevant, but we might as well correct this.
In addition, although we checked for bad size values in SDR1, we never
reported an error if entirely invalid bits were set there. Add this check
to ppc_store_sdr1().
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The function ppc_hash64_set_sdr1 basically checked the htabsize and set an
error if it was too big, otherwise it just stored the value in SPR_SDR1.
Given that the only function which calls ppc_hash64_set_sdr1() is
ppc_store_sdr1(), why not handle the checking in ppc_store_sdr1() to avoid
the extra function call. Note that ppc_store_sdr1() already stores the
value in SPR_SDR1 anyway, so we were doing it twice.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
[dwg: Remove unnecessary error temporary]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The pseries machine type implements the behaviour of a PAPR compliant
hypervisor, without actually executing such a hypervisor on the virtual
CPU. To do this we need some hooks in the CPU code to make hypervisor
facilities get redirected to the machine instead of emulated internally.
For hypercalls this is managed through the cpu->vhyp field, which points
to a QOM interface with a method implementing the hypercall.
For the hashed page table (HPT) - also a hypervisor resource - we use an
older hack. CPUPPCState has an 'external_htab' field which when non-NULL
indicates that the HPT is stored in qemu memory, rather than within the
guest's address space.
For consistency - and to make some future extensions easier - this merges
the external HPT mechanism into the vhyp mechanism. Methods are added
to vhyp for the basic operations the core hash MMU code needs: map_hptes()
and unmap_hptes() for reading the HPT, store_hpte() for updating it and
hpt_mask() to retrieve its size.
To match this, the pseries machine now sets these vhyp fields in its
existing vhyp class, rather than reaching into the cpu object to set the
external_htab field.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
|
|
CPUPPCState includes fields htab_base and htab_mask which store the base
address (GPA) and size (as a mask) of the guest's hashed page table (HPT).
These are set when the SDR1 register is updated.
Keeping these in sync with the SDR1 is actually a little bit fiddly, and
probably not useful for performance, since keeping them expands the size of
CPUPPCState. It also makes some upcoming changes harder to implement.
This patch removes these fields, in favour of calculating them directly
from the SDR1 contents when necessary.
This does make a change to the behaviour of attempting to write a bad value
(invalid HPT size) to the SDR1 with an mtspr instruction. Previously, the
bad value would be stored in SDR1 and could be retrieved with a later
mfspr, but the HPT size as used by the softmmu would be, clamped to the
allowed values. Now, writing a bad value is treated as a no-op. An error
message is printed in both new and old versions.
I'm not sure which behaviour, if either, matches real hardware. I don't
think it matters that much, since it's pretty clear that if an OS writes
a bad value to SDR1, it's not going to boot.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
|
|
Accesses to the hashed page table (HPT) are complicated by the fact that
the HPT could be in one of three places:
1) Within guest memory - when we're emulating a full guest CPU at the
hardware level (e.g. powernv, mac99, g3beige)
2) Within qemu, but outside guest memory - when we're emulating user and
supervisor instructions within TCG, but instead of emulating
the CPU's hypervisor mode, we just emulate a hypervisor's behaviour
(pseries in TCG or KVM-PR)
3) Within the host kernel - a pseries machine using KVM-HV
acceleration. Mostly accesses to the HPT are handled by KVM,
but there are a few cases where qemu needs to access it via a
special fd for the purpose.
In order to batch accesses to the fd in case (3), we use a somewhat awkward
ppc_hash64_start_access() / ppc_hash64_stop_access() pair, which for case
(3) reads / releases several HPTEs from the kernel as a batch (usually a
whole PTEG). For cases (1) & (2) it just returns an address value. The
actual HPTE load helpers then need to interpret the returned token
differently in the 3 cases.
This patch keeps the same basic structure, but simplfiies the details.
First start_access() / stop_access() are renamed to map_hptes() and
unmap_hptes() to make their operation more obvious. Second, map_hptes()
now always returns a qemu pointer, which can always be used in the same way
by the load_hpte() helpers. In case (1) it comes from address_space_map()
in case (2) directly from qemu's HPT buffer and in case (3) from a
temporary buffer read from the KVM fd.
While we're at it, make things a bit more consistent in terms of types and
variable names: avoid variables named 'index' (it shadows index(3) which
can lead to confusing results), use 'hwaddr ptex' for HPTE indices and
uint64_t for each of the HPTE words, use ptex throughout the call stack
instead of pte_offset in some places (we still need that at the bottom
layer, but nowhere else).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
At present the SDR1 register - the base of the system's hashed page table
(HPT) - is represented as an SPR with supervisor read and write permission.
However, on CPUs which have a hypervisor mode, the SDR1 is a hypervisor
only resource. Change the permission checking on the SPR to reflect this.
Now that this is done, we don't need to check for an external HPT executing
mtsdr1: an external HPT only applies when we're emulating the behaviour of
a hypervisor, rather than modelling the CPU's hypervisor mode internally,
so if we're permitted to execute mtsdr1, we don't have an external HPT.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
|
|
cpu_ppc_set_papr() sets up various aspects of CPU state for use with PAPR
paravirtualized guests. However, it doesn't set the virtual hypervisor,
so callers must also call cpu_ppc_set_vhyp() so that PAPR hypercalls are
handled properly. This is a bit silly, so fold setting the virtual
hypervisor into cpu_ppc_set_papr().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
|
|
When a 'pseries' guest is running with KVM-HV, the guest's hashed page
table (HPT) is stored within the host kernel, so it is not directly
accessible to qemu. Most of the time, qemu doesn't need to access it:
we're using the hardware MMU, and KVM itself implements the guest
hypercalls for manipulating the HPT.
However, qemu does need access to the in-KVM HPT to implement
get_phys_page_debug() for the benefit of the gdbstub, and maybe for
other debug operations.
To allow this, 7c43bca "target-ppc: Fix page table lookup with kvm
enabled" added kvmppc_hash64_read_pteg() to target/ppc/kvm.c to read
in a batch of HPTEs from the KVM table. Unfortunately, there are a
couple of problems with this:
First, the name of the function implies it always reads a whole PTEG
from the HPT, but in fact in some cases it's used to grab individual
HPTEs (which ends up pulling 8 HPTEs, not aligned to a PTEG from the
kernel).
Second, and more importantly, the code to read the HPTEs from KVM is
simply wrong, in general. The data from the fd that KVM provides is
designed mostly for compact migration rather than this sort of one-off
access, and so needs some decoding for this purpose. The current code
will work in some cases, but if there are invalid HPTEs then it will
not get sane results.
This patch rewrite the HPTE reading function to have a simpler
interface (just read n HPTEs into a caller provided buffer), and to
correctly decode the stream from the kernel.
For consistency we also clean up the similar function for altering
HPTEs within KVM (introduced in c138593 "target-ppc: Update
ppc_hash64_store_hpte to support updating in-kernel htab").
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Removes duplicate code and will be useful for consolidating flags
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
into staging
ppc patch queue for 2017-02-22
This pull request has:
* Yet more POWER9 instruction implementations
* Some extensions to the softfloat code which are necesssary for
some of those instructions
* Some preliminary patches in preparation for POWER9 softmmu
implementation
* Igor Mammedov's cleanups to unify hotplug cpu handling across
architectures
* Assorted bugfixes
The softfloat and cpu hotplug changes aren't entirely ppc specific (in
fact the hotplug stuff contains some pc specific patches). However
they're included here because ppc is one of the main beneficiaries,
and the series depend on some ppc specific patches.
# gpg: Signature made Wed 22 Feb 2017 06:29:47 GMT
# gpg: using RSA key 0x6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>"
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>"
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>"
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>"
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-2.9-20170222: (43 commits)
hw/ppc/ppc405_uc.c: Avoid integer overflows
hw/ppc/spapr: Check for valid page size when hot plugging memory
target-ppc: fix Book-E TLB matching
hw/net/spapr_llan: 6 byte mac address device tree entry
machine: replace query_hotpluggable_cpus() callback with has_hotpluggable_cpus flag
machine: unify [pc_|spapr_]query_hotpluggable_cpus() callbacks
spapr: reuse machine->possible_cpus instead of cores[]
change CPUArchId.cpu type to Object*
pc: pass apic_id to pc_find_cpu_slot() directly so lookup could be done without CPU object
pc: calculate topology only once when possible_cpus is initialised
pc: move pcms->possible_cpus init out of pc_cpus_init()
machine: move possible_cpus to MachineState
hw/pci-host/prep: Do not use hw_error() in realize function
target/ppc/POWER9: Direct all instr and data storage interrupts to the hypv
target/ppc/POWER9: Adapt LPCR handling for POWER9
target/ppc/POWER9: Add ISAv3.00 MMU definition
target/ppc: Fix LPCR DPFD mask define
target-ppc: Add xscvqpudz and xscvqpuwz instructions
target-ppc: Implement round to odd variants of quad FP instructions
softfloat: Add float128_to_uint32_round_to_zero()
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
|
|
On POWER, the valid page sizes that the guest can use are bound
to the CPU and not to the memory region. QEMU already has some
fancy logic to find out the right maximum memory size to tell
it to the guest during boot (see getrampagesize() in the file
target/ppc/kvm.c for more information).
However, once we're booted and the guest is using huge pages
already, it is currently still possible to hot-plug memory regions
that does not support huge pages - which of course does not work
on POWER, since the guest thinks that it is possible to use huge
pages everywhere. The KVM_RUN ioctl will then abort with -EFAULT,
QEMU spills out a not very helpful error message together with
a register dump and the user is annoyed that the VM unexpectedly
died.
To avoid this situation, we should check the page size of hot-plugged
DIMMs to see whether it is possible to use it in the current VM.
If it does not fit, we can print out a better error message and
refuse to add it, so that the VM does not die unexpectely and the
user has a second chance to plug a DIMM with a matching memory
backend instead.
Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=1419466
Signed-off-by: Thomas Huth <thuth@redhat.com>
[dwg: Fix a build error on 32-bit builds with KVM]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The Book-E TLB matching process should bail out early when a TLB
entry matches, but the access permissions are wrong. The CPU
will then raise a DSI error instead of a Data TLB error, as
described for TLB matching in Freescale and IBM documents.
Signed-off-by: Alex Zuepke <azu@sysgo.de>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The vpm0 bit was removed from the LPCR in POWER9, this bit controlled
whether ISI and DSI interrupts were directed to the hypervisor or the
partition. These interrupts now go to the hypervisor irrespective, thus
it is no longer necessary to check the vmp0 bit in the LPCR.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The logical partitioning control register controls a threads operation
based on the partition it is currently executing. Add new definitions and
update the mask used when writing to the LPCR based on the POWER9 spec.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
POWER9 processors implement the mmu as defined in version 3.00 of the ISA.
Add a definition for this mmu model and set the POWER9 cpu model to use
this mmu model.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The DPFD field in the LPCR is 3 bits wide. This has always been defined
as 0x3 << shift which indicates a 2 bit field, which is incorrect.
Correct this.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xscvqpudz: VSX Scalar truncate & Convert Quad-Precision format to
Unsigned Doubleword format
xscvqpuwz: VSX Scalar truncate & Convert Quad-Precision format to
Unsigned Word format
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xsaddqpo: VSX Scalar Add Quad-Precision using round to Odd
xsmulqo: VSX Scalar Multiply Quad-Precision using round to Odd
xsdivqpo: VSX Scalar Divide Quad-Precision using round to Odd
xscvqpdpo: VSX Scalar round & Convert Quad-Precision format to
Double-Precision format using round to Odd
xssqrtqpo: VSX Scalar Square Root Quad-Precision using round to Odd
xssubqpo: VSX Scalar Subtract Quad-Precision using round to Odd
In addition, fix the invalid bitmask in the instruction encoding
of xssqrtqp[o].
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
CC: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Use the available wait instruction implementation.
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
slbsync: SLB Synchoronize
The instruction provides an ordering function for the effects of all
slbieg instructions executed by the thread executing the slbsync
instruction.
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
slbieg: SLB Invalidate Entry Global
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
stwat: Store Word Atomic
stdat: Store Doubleword Atomic
The instruction includes as function code (5 bits) which gives a detail
on the operation to be performed. The patch implements five such
functions.
Signed-off-by: Balamuruhan S <bala24@linux.vnet.ibm.com>
Signed-off-by: Harish S <harisrir@linux.vnet.ibm.com>
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
[ implement stdat, use macro and combine both implementation ]
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
lwat: Load Word Atomic
ldat: Load Doubleword Atomic
The instruction includes as function code (5 bits) which gives a detail
on the operation to be performed. The patch implements five such
functions.
Signed-off-by: Balamuruhan S <bala24@linux.vnet.ibm.com>
Signed-off-by: Harish S <harisrir@linux.vnet.ibm.com>
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
[ combine both lwat/ldat implementation using macro ]
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xsmaxjdp: VSX Scalar Maximum Type-J Double-Precision
xsminjdp: VSX Scalar Minimum Type-J Double-Precision
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xsmaxcdp: VSX Scalar Maximum Type-C Double-Precision
xsmincdp: VSX Scalar Minimum Type-C Double-Precision
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xssubqp: VSX Scalar Subtract Quad-Precision.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xssqrtqp: VSX Scalar Square Root Quad-Precision.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xsrqpxp: VSX Scalar Round Quad-Precision to Double-Extended Precision.
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xsrqpi[x]: VSX Scalar Round to Quad-Precision Integer
[with Inexact].
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
When running certain HMP commands ("info registers", "info cpustats",
"info tlb", "nmi", "memsave" or dumping virtual memory) with the "none"
machine, QEMU crashes with a segmentation fault. This happens because the
"none" machine does not have any CPUs by default, but these HMP commands
did not check for a valid CPU pointer yet. Add such checks now, so we get
an error message about the missing CPU instead.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1484309555-1935-1-git-send-email-thuth@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
|
|
When running with KVM on POWER, we are registering a "family" CPU
type for the host CPU that we are running on. For example, on all
POWER8-compatible hosts, we register a "POWER8" CPU type, so that
you can always start QEMU with "-cpu POWER8" there, without the
need to know whether you are running on a POWER8, POWER8E or POWER8NVL
host machine.
However, we also have a "POWER8" CPU alias in the ppc_cpu_aliases list
(that is mainly useful for TCG). This leads to two cosmetical drawbacks:
If the user runs QEMU with "-cpu ?", we always claim that POWER8 is an
"alias for POWER8_v2.0" - which is simply not true when running with
KVM on POWER. And when using the 'query-cpu-definitions' QMP call,
there are currently two entries for "POWER8", one for the alias, and
one for the additional registered type.
To solve the two problems, we should rather update the "family" alias
instead of registering a new types. We then only have one "POWER8"
CPU definition around, an alias, which also points to the right
destination.
Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=1396536
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
We are calculating the authority mask register key value wrong.
The pte entry contains the key value with the two upper bits and the three
lower bits stored separately. We should use these two portions to get a 5
bit value, not or them together which will only give us a 3 bit value.
Fix this.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
We were printing an unsigned value as a signed value, fix this.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The cp_abort instruction is used to remove the state of an in progress
copy paste sequence. POWER9 compilers add this in various places, such
as context switches which causes illegal instruction signals since we
don't yet implement this instruction.
Given there is no implementation of the copy paste facility and that we
don't claim to support it, we can just noop this instruction.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
It can be useful when debugging to print the LPCR value.
Thus we add the LPCR to the "info registers" output if the register had
been defined.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
xststdcsp: VSX Scalar Test Data Class Single-Precision
xststdcdp: VSX Scalar Test Data Class Double-Precision
xststdcqp: VSX Scalar Test Data Class Quad-Precision
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|