Age | Commit message (Collapse) | Author |
|
The SEV FW >= 0.23 added a new command that can be used to query the
attestation report containing the SHA-256 digest of the guest memory
and VMSA encrypted with the LAUNCH_UPDATE and sign it with the PEK.
Note, we already have a command (LAUNCH_MEASURE) that can be used to
query the SHA-256 digest of the guest memory encrypted through the
LAUNCH_UPDATE. The main difference between previous and this command
is that the report is signed with the PEK and unlike the LAUNCH_MEASURE
command the ATTESATION_REPORT command can be called while the guest
is running.
Add a QMP interface "query-sev-attestation-report" that can be used
to get the report encoded in base64.
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Tom Lendacky <Thomas.Lendacky@amd.com>
Cc: Eric Blake <eblake@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Reviewed-by: James Bottomley <jejb@linux.ibm.com>
Tested-by: James Bottomley <jejb@linux.ibm.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Connor Kuehl <ckuehl@redhat.com>
Message-Id: <20210429170728.24322-1-brijesh.singh@amd.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
|
|
When SEV-ES is enabled, it is not possible modify the guests register
state after it has been initially created, encrypted and measured.
Normally, an INIT-SIPI-SIPI request is used to boot the AP. However, the
hypervisor cannot emulate this because it cannot update the AP register
state. For the very first boot by an AP, the reset vector CS segment
value and the EIP value must be programmed before the register has been
encrypted and measured. Search the guest firmware for the guest for a
specific GUID that tells Qemu the value of the reset vector to use.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <22db2bfb4d6551aed661a9ae95b4fdbef613ca21.1611682609.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Provide initial support for SEV-ES. This includes creating a function to
indicate the guest is an SEV-ES guest (which will return false until all
support is in place), performing the proper SEV initialization and
ensuring that the guest CPU state is measured as part of the launch.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Co-developed-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Venu Busireddy <venu.busireddy@oracle.com>
Message-Id: <2e6386cbc1ddeaf701547dd5677adf5ddab2b6bd.1611682609.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When AMD's SEV memory encryption is in use, flash memory banks (which are
initialed by pc_system_flash_map()) need to be encrypted with the guest's
key, so that the guest can read them.
That's abstracted via the kvm_memcrypt_encrypt_data() callback in the KVM
state.. except, that it doesn't really abstract much at all.
For starters, the only call site is in code specific to the 'pc'
family of machine types, so it's obviously specific to those and to
x86 to begin with. But it makes a bunch of further assumptions that
need not be true about an arbitrary confidential guest system based on
memory encryption, let alone one based on other mechanisms:
* it assumes that the flash memory is defined to be encrypted with the
guest key, rather than being shared with hypervisor
* it assumes that that hypervisor has some mechanism to encrypt data into
the guest, even though it can't decrypt it out, since that's the whole
point
* the interface assumes that this encrypt can be done in place, which
implies that the hypervisor can write into a confidential guests's
memory, even if what it writes isn't meaningful
So really, this "abstraction" is actually pretty specific to the way SEV
works. So, this patch removes it and instead has the PC flash
initialization code call into a SEV specific callback.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
|
|
AMD SEV allows a guest owner to inject a secret blob
into the memory of a virtual machine. The secret is
encrypted with the SEV Transport Encryption Key and
integrity is guaranteed with the Transport Integrity
Key. Although QEMU facilitates the injection of the
launch secret, it cannot access the secret.
Signed-off-by: Tobin Feldman-Fitzthum <tobin@linux.ibm.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Message-Id: <20201027170303.47550-1-tobin@linux.ibm.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
|
|
The query-sev-capabilities was reporting errors through error_report;
change it to use Error** so that the cause of the failure is clearer.
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
No header includes qemu-common.h after this commit, as prescribed by
qemu-common.h's file comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-5-armbru@redhat.com>
[Rebased with conflicts resolved automatically, except for
include/hw/arm/xlnx-zynqmp.h hw/arm/nrf51_soc.c hw/arm/msf2-soc.c
block/qcow2-refcount.c block/qcow2-cluster.c block/qcow2-cache.c
target/arm/cpu.h target/lm32/cpu.h target/m68k/cpu.h target/mips/cpu.h
target/moxie/cpu.h target/nios2/cpu.h target/openrisc/cpu.h
target/riscv/cpu.h target/tilegx/cpu.h target/tricore/cpu.h
target/unicore32/cpu.h target/xtensa/cpu.h; bsd-user/main.c and
net/tap-bsd.c fixed up]
|
|
The function can be used to get the current SEV capabilities.
The capabilities include platform diffie-hellman key (pdh) and certificate
chain. The key can be provided to the external entities which wants to
establish a trusted channel between SEV firmware and guest owner.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
During machine creation we encrypted the guest bios image, the
LAUNCH_MEASURE command can be used to retrieve the measurement of
the encrypted memory region. This measurement is a signature of
the memory contents that can be sent to the guest owner as an
attestation that the memory was encrypted correctly by the firmware.
VM management tools like libvirt can query the measurement using
query-sev-launch-measure QMP command.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When memory encryption is enabled, KVM_SEV_INIT command is used to
initialize the platform. The command loads the SEV related persistent
data from non-volatile storage and initializes the platform context.
This command should be first issued before invoking any other guest
commands provided by the SEV firmware.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|