Age | Commit message (Collapse) | Author |
|
This option is used to select the interrupt controller mode (XICS or
XIVE) with which the machine will operate. XICS being the default
mode for now.
When running a machine with the XIVE interrupt mode backend, the guest
OS is required to have support for the XIVE exploitation mode. In the
case of legacy OS, the mode selected by CAS should be XICS and the OS
should fail to boot. However, QEMU could possibly detect it, terminate
the boot process and reset to stop in the SLOF firmware. This is not
yet handled.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The interrupt modes supported by the hypervisor are advertised to the
guest with new bits definitions of the option vector 5 of property
"ibm,arch-vec-5-platform-support. The byte 23 bits 0-1 of the OV5 are
defined as follow :
0b00 PAPR 2.7 and earlier (Legacy systems)
0b01 XIVE Exploitation mode only
0b10 Either available
If the client/guest selects the XIVE interrupt mode, it informs the
hypervisor by returning the value 0b01 in byte 23 bits 0-1. A 0b00
value indicates the use of the XICS interrupt mode (Legacy systems).
The sPAPR IRQ backend is extended with these definitions and the
values are directly used to populate the "ibm,arch-vec-5-platform-support"
property. The interrupt mode is advertised under TCG and under KVM.
Although a KVM XIVE device is not yet available, the machine can still
operate with kernel_irqchip=off. However, we apply a restriction on
the CPU which is required to be a POWER9 when a XIVE interrupt
controller is in use.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
For the time being, the XIVE reset handler updates the OS CAM line of
the vCPU as it is done under a real hypervisor when a vCPU is
scheduled to run on a HW thread. This will let the XIVE presenter
engine find a match among the NVTs dispatched on the HW threads.
This handler will become even more useful when we introduce the
machine supporting both interrupt modes, XIVE and XICS. In this
machine, the interrupt mode is chosen by the CAS negotiation process
and activated after a reset.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Introduce a new sPAPR IRQ handler to handle resend after migration
when the machine is using a KVM XICS interrupt controller model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Each interrupt mode has its own specific interrupt presenter object,
that we store under the CPU object, one for XICS and one for XIVE.
Extend the sPAPR IRQ backend with a new handler to support them both.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The XIVE interface for the guest is described in the device tree under
the "interrupt-controller" node. A couple of new properties are
specific to XIVE :
- "reg"
contains the base address and size of the thread interrupt
managnement areas (TIMA), for the User level and for the Guest OS
level. Only the Guest OS level is taken into account today.
- "ibm,xive-eq-sizes"
the size of the event queues. One cell per size supported, contains
log2 of size, in ascending order.
- "ibm,xive-lisn-ranges"
the IRQ interrupt number ranges assigned to the guest for the IPIs.
and also under the root node :
- "ibm,plat-res-int-priorities"
contains a list of priorities that the hypervisor has reserved for
its own use. OPAL uses the priority 7 queue to automatically
escalate interrupts for all other queues (DD2.X POWER9). So only
priorities [0..6] are allowed for the guest.
Extend the sPAPR IRQ backend with a new handler to populate the DT
with the appropriate "interrupt-controller" node.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The different XIVE virtualization structures (sources and event queues)
are configured with a set of Hypervisor calls :
- H_INT_GET_SOURCE_INFO
used to obtain the address of the MMIO page of the Event State
Buffer (ESB) entry associated with the source.
- H_INT_SET_SOURCE_CONFIG
assigns a source to a "target".
- H_INT_GET_SOURCE_CONFIG
determines which "target" and "priority" is assigned to a source
- H_INT_GET_QUEUE_INFO
returns the address of the notification management page associated
with the specified "target" and "priority".
- H_INT_SET_QUEUE_CONFIG
sets or resets the event queue for a given "target" and "priority".
It is also used to set the notification configuration associated
with the queue, only unconditional notification is supported for
the moment. Reset is performed with a queue size of 0 and queueing
is disabled in that case.
- H_INT_GET_QUEUE_CONFIG
returns the queue settings for a given "target" and "priority".
- H_INT_RESET
resets all of the guest's internal interrupt structures to their
initial state, losing all configuration set via the hcalls
H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
- H_INT_SYNC
issue a synchronisation on a source to make sure all notifications
have reached their queue.
Calls that still need to be addressed :
H_INT_SET_OS_REPORTING_LINE
H_INT_GET_OS_REPORTING_LINE
See the code for more documentation on each hcall.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Folded in fix for field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The XIVE IRQ backend uses the same layout as the new XICS backend but
covers the full range of the IRQ number space. The IRQ numbers for the
CPU IPIs are allocated at the bottom of this space, below 4K, to
preserve compatibility with XICS which does not use that range.
This should be enough given that the maximum number of CPUs is 1024
for the sPAPR machine under QEMU. For the record, the biggest POWER8
or POWER9 system has a maximum of 1536 HW threads (16 sockets, 192
cores, SMT8).
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
sPAPRXive models the XIVE interrupt controller of the sPAPR machine.
It inherits from the XiveRouter and provisions storage for the routing
tables :
- Event Assignment Structure (EAS)
- Event Notification Descriptor (END)
The sPAPRXive model incorporates an internal XiveSource for the IPIs
and for the interrupts of the virtual devices of the guest. This model
is consistent with XIVE architecture which also incorporates an
internal IVSE for IPIs and accelerator interrupts in the IVRE
sub-engine.
The sPAPRXive model exports two memory regions, one for the ESB
trigger and management pages used to control the sources and one for
the TIMA pages. They are mapped by default at the addresses found on
chip 0 of a baremetal system. This is also consistent with the XIVE
architecture which defines a Virtualization Controller BAR for the
internal IVSE ESB pages and a Thread Managment BAR for the TIMA.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Fold in field accessor fixes]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The last sub-engine of the XIVE architecture is the Interrupt
Virtualization Presentation Engine (IVPE). On HW, the IVRE and the
IVPE share elements, the Power Bus interface (CQ), the routing table
descriptors, and they can be combined in the same HW logic. We do the
same in QEMU and combine both engines in the XiveRouter for
simplicity.
When the IVRE has completed its job of matching an event source with a
Notification Virtual Target (NVT) to notify, it forwards the event
notification to the IVPE sub-engine. The IVPE scans the thread
interrupt contexts of the Notification Virtual Targets (NVT)
dispatched on the HW processor threads and if a match is found, it
signals the thread. If not, the IVPE escalates the notification to
some other targets and records the notification in a backlog queue.
The IVPE maintains the thread interrupt context state for each of its
NVTs not dispatched on HW processor threads in the Notification
Virtual Target table (NVTT).
The model currently only supports single NVT notifications.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in fix for field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Each POWER9 processor chip has a XIVE presenter that can generate four
different exceptions to its threads:
- hypervisor exception,
- O/S exception
- Event-Based Branch (EBB)
- msgsnd (doorbell).
Each exception has a state independent from the others called a Thread
Interrupt Management context. This context is a set of registers which
lets the thread handle priority management and interrupt acknowledgment
among other things. The most important ones being :
- Interrupt Priority Register (PIPR)
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
These registers are accessible through a specific MMIO region, called
the Thread Interrupt Management Area (TIMA), four aligned pages, each
exposing a different view of the registers. First page (page address
ending in 0b00) gives access to the entire context and is reserved for
the ring 0 view for the physical thread context. The second (page
address ending in 0b01) is for the hypervisor, ring 1 view. The third
(page address ending in 0b10) is for the operating system, ring 2
view. The fourth (page address ending in 0b11) is for user level, ring
3 view.
The thread interrupt context is modeled with a XiveTCTX object
containing the values of the different exception registers. The TIMA
region is mapped at the same address for each CPU.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The Event Notification Descriptor (END) XIVE structure also contains
two Event State Buffers providing further coalescing of interrupts,
one for the notification event (ESn) and one for the escalation events
(ESe). A MMIO page is assigned for each to control the EOI through
loads only. Stores are not allowed.
The END ESBs are modeled through an object resembling the 'XiveSource'
It is stateless as the END state bits are backed into the XiveEND
structure under the XiveRouter and the MMIO accesses follow the same
rules as for the XiveSource ESBs.
END ESBs are not supported by the Linux drivers neither on OPAL nor on
sPAPR. Nevetherless, it provides a mean to study the question in the
future and validates a bit more the XIVE model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix for field access]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The XIVE sPAPR IRQ backend will use it to define the number of ENDs of
the IC controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Initialize the MSI bitmap from it as this will be necessary for the
sPAPR IRQ backend for XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
To complete the event routing, the IVRE sub-engine uses a second table
containing Event Notification Descriptor (END) structures.
An END specifies on which Event Queue (EQ) the event notification
data, defined in the associated EAS, should be posted when an
exception occurs. It also defines which Notification Virtual Target
(NVT) should be notified.
The Event Queue is a memory page provided by the O/S defining a
circular buffer, one per server and priority couple, containing Event
Queue entries. These are 4 bytes long, the first bit being a
'generation' bit and the 31 following bits the END Data field. They
are pulled by the O/S when the exception occurs.
The END Data field is a way to set an invariant logical event source
number for an IRQ. On sPAPR machines, it is set with the
H_INT_SET_SOURCE_CONFIG hcall when the EISN flag is used.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix from Cédric fixing field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The XiveRouter models the second sub-engine of the XIVE architecture :
the Interrupt Virtualization Routing Engine (IVRE).
The IVRE handles event notifications of the IVSE and performs the
interrupt routing process. For this purpose, it uses a set of tables
stored in system memory, the first of which being the Event Assignment
Structure (EAS) table.
The EAT associates an interrupt source number with an Event Notification
Descriptor (END) which will be used in a second phase of the routing
process to identify a Notification Virtual Target.
The XiveRouter is an abstract class which needs to be inherited from
to define a storage for the EAT, and other upcoming tables.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in parts of a later fix by Cédric fixing field access]
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The XiveNotifier offers a simple interface, between the XiveSource
object and the main interrupt controller of the machine. It will
forward event notifications to the XIVE Interrupt Virtualization
Routing Engine (IVRE).
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Adjust type name string for XiveNotifier]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The 'sent' status of the LSI interrupt source is modeled with the 'P'
bit of the ESB and the assertion status of the source is maintained
with an extra bit under the main XiveSource object. The type of the
source is stored in the same array for practical reasons.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nit]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The first sub-engine of the overall XIVE architecture is the Interrupt
Virtualization Source Engine (IVSE). An IVSE can be integrated into
another logic, like in a PCI PHB or in the main interrupt controller
to manage IPIs.
Each IVSE instance is associated with an Event State Buffer (ESB) that
contains a two bit state entry for each possible event source. When an
event is signaled to the IVSE, by MMIO or some other means, the
associated interrupt state bits are fetched from the ESB and
modified. Depending on the resulting ESB state, the event is forwarded
to the IVRE sub-engine of the controller doing the routing.
Each supported ESB entry is associated with either a single or a
even/odd pair of pages which provides commands to manage the source:
to EOI, to turn off the source for instance.
On a sPAPR machine, the O/S will obtain the page address of the ESB
entry associated with a source and its characteristic using the
H_INT_GET_SOURCE_INFO hcall. On PowerNV, a similar OPAL call is used.
The xive_source_notify() routine is in charge forwarding the source
event notification to the routing engine. It will be filled later on.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The OpenPIC have 5 outputs per connected CPU. The machine init code hence
needs a bi-dimensional array (smp_cpu lines, 5 columns) to wire up the irqs
between the PIC and the CPUs.
The current code first allocates an array of smp_cpus pointers to qemu_irq
type, then it allocates another array of smp_cpus * 5 qemu_irq and fills the
first array with pointers to each line of the second array. This is rather
convoluted.
Simplify the logic by introducing a structured type that describes all the
OpenPIC outputs for a single CPU, ie, fixed size of 5 qemu_irq, and only
allocate a smp_cpu sized array of those.
This also allows to use g_new(T, n) instead of g_malloc(sizeof(T) * n)
as recommended in HACKING.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Two s390x bugfixes.
# gpg: Signature made Thu 20 Dec 2018 16:36:42 GMT
# gpg: using RSA key DECF6B93C6F02FAF
# gpg: Good signature from "Cornelia Huck <conny@cornelia-huck.de>"
# gpg: aka "Cornelia Huck <huckc@linux.vnet.ibm.com>"
# gpg: aka "Cornelia Huck <cornelia.huck@de.ibm.com>"
# gpg: aka "Cornelia Huck <cohuck@kernel.org>"
# gpg: aka "Cornelia Huck <cohuck@redhat.com>"
# Primary key fingerprint: C3D0 D66D C362 4FF6 A8C0 18CE DECF 6B93 C6F0 2FAF
* remotes/cohuck/tags/s390x-20181220:
hw/s390x: Fix bad mask in time2tod()
hw/s390/ccw.c: Don't take address of packed members
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
|
|
The watermark bits are set in the interrupt pending register according
to the configuration of txcnt and rxcnt in the txctrl and rxctrl
registers.
Since the UART TX does not implement a FIFO, the txwm bit is set as long
as the TX watermark level is greater than zero.
Signed-off-by: Nathaniel Graff <nathaniel.graff@sifive.com>
Reviewed-by: Michael Clark <mjc@sifive.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
|
|
The GEM ethernet on SiFive unleashed has fixed input clock
of 125MHz as-per SiFive FU540 manual. This patch updates FDT
generation for QEMU sifive_u machine to provide fixed-rate
clock for GEM ethernet.
Signed-off-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
|
|
Connect the gpex PCIe device based on the device tree included in the
HiFive Unleashed ROM.
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Andrea Bolognani <abologna@redhat.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
|
|
Increase the number of interrupts to match the HiFive Unleashed board.
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Andrea Bolognani <abologna@redhat.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
|
|
Switch the intr_supported variable from a boolean to OnOffAuto type so
that we can know whether the user specified it or not. With that
we'll have a chance to help the user to choose more wisely where
possible. Introduce x86_iommu_ir_supported() to mask these changes.
No functional change at all.
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Starting from QEMU 4.0, let's specify "split" as the default value for
kernel-irqchip.
So for QEMU>=4.0 we'll have: allowed=Y,required=N,split=Y
for QEMU<=3.1 we'll have: allowed=Y,required=N,split=N
(omitting all the "kernel_irqchip_" prefix)
Note that this will let the default q35 machine type to depend on
Linux version 4.4 or newer because that's where split irqchip is
introduced in kernel. But it's fine since we're boosting supported
Linux version for QEMU 4.0 to around Linux 4.5. For more information
please refer to the discussion on AMD's RDTSCP:
https://lore.kernel.org/lkml/20181210181328.GA762@zn.tnic/
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Introduce and use the "unplug" callback.
This is a preparation for multi-stage hotplug handlers, whereby the bus
hotplug handler is overwritten by the machine hotplug handler. This handler
will then pass control to the bus hotplug handler. So to get this running
cleanly, we also have to make sure to go via the hotplug handler chain when
actually unplugging a device after an unplug request. Lookup the hotplug
handler and call "unplug".
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
These functions are essentially the same, we only have to use
object_get_typename() for reporting errors. So let's share the
implementation of hotplug handler callbacks.
Suggested-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Introduce and use the "unplug" callback.
This is a preparation for multi-stage hotplug handlers, whereby the bus
hotplug handler is overwritten by the machine hotplug handler. This handler
will then pass control to the bus hotplug handler. So to get this running
cleanly, we also have to make sure to go via the hotplug handler chain when
actually unplugging a device after an unplug request. Lookup the hotplug
handler and call "unplug".
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Introduce and use the "unplug" callback.
This is a preparation for multi-stage hotplug handlers, whereby the bus
hotplug handler is overwritten by the machine hotplug handler. This handler
will then pass control to the bus hotplug handler. So to get this running
cleanly, we also have to make sure to go via the hotplug handler chain when
actually unplugging a device after an unplug request. Lookup the hotplug
handler and call "unplug".
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Perform the check in the pre_plug handler. In addition, we need the
capability only if the device is actually hotplugged (and not created
during machine initialization). This is a preparation for coldplugging
pci devices via that hotplug handler.
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
The callbacks are also called for cold plugged devices. Drop the "hot"
to better match the actual callback names.
While at it, also rename shpc_device_hotplug_common() to
shpc_device_plug_common().
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
The callbacks are also called for cold plugged devices. Drop the "hot"
to better match the actual callback names.
While at it, also rename pcie_cap_slot_hotplug_common() to
pcie_cap_slot_plug_common().
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
The only remaining AcpiRsdpDescriptor users are the ACPI utils for the
BIOS table tests.
We remove that dependency and can thus remove the structure itself.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Since "s390x/tcg: avoid overflows in time2tod/tod2time", the
time2tod() function tries to deal with the 9 uppermost bits in the
time value, but uses the wrong mask for this: 0xff80000000000000 should
be used instead of 0xff10000000000000 here.
Fixes: 14055ce53c2d901d826ffad7fb7d6bb8ab46bdfd
Cc: qemu-stable@nongnu.org
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1544792887-14575-1-git-send-email-thuth@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[CH: tweaked commit message]
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
|
|
Clean up includes so that osdep.h is included first and headers
which it implies are not included manually.
This commit was created with scripts/clean-includes, with the changes
to the following files manually reverted:
contrib/libvhost-user/libvhost-user-glib.h
contrib/libvhost-user/libvhost-user.c
contrib/libvhost-user/libvhost-user.h
linux-user/mips64/cpu_loop.c
linux-user/mips64/signal.c
linux-user/sparc64/cpu_loop.c
linux-user/sparc64/signal.c
linux-user/x86_64/cpu_loop.c
linux-user/x86_64/signal.c
target/s390x/gen-features.c
tests/migration/s390x/a-b-bios.c
tests/test-rcu-simpleq.c
tests/test-rcu-tailq.c
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20181204172535.2799-1-armbru@redhat.com>
Acked-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Acked-by: Yuval Shaia <yuval.shaia@oracle.com>
Acked-by: Viktor Prutyanov <viktor.prutyanov@phystech.edu>
|
|
Now that build_rsdp() supports building both legacy and current RSDP
tables, we can move it to a generic folder (hw/acpi) and have the i386
ACPI code reuse it in order to reduce code duplication.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
|
|
That will allow us to generalize the ARM build_rsdp() routine to support
both legacy RSDP (The current i386 implementation) and extended RSDP
(The ARM implementation).
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Support DMA read/write draining should be easy for existing VT-d
emulation since the emulation itself does not have any request queue
there so we don't need to do anything to flush the un-commited queue.
What we need to do is to declare the support.
These capabilities are required to pass Windows SVVP test program. It
is verified that when with parameters "x-aw-bits=48,caching-mode=off"
we can pass the Windows SVVP test with this patch applied. Otherwise
we'll fail with:
IOMMU[0] - DWD (DMA write draining) not supported
IOMMU[0] - DWD (DMA read draining) not supported
Segment 0 has no DMA remapping capable IOMMU units
However since these bits are not declared support for QEMU<=3.1, we'll
need a compatibility bit for it and we turn this on by default only
for QEMU>=4.0.
Please refer to VT-d spec 6.5.4 for more information.
CC: Yu Wang <wyu@redhat.com>
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1654550
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Change the default speed and width for new machine types to the
fastest and widest currently supported. This should be compatible to
the PCIe 4.0 spec. Pre-QEMU-4.0 machine types remain at 2.5GT/s, x1
width.
Cc: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Add fields allowing the PCIe link speed and width of a PCIESlot to
be configured, with an instance_post_init callback on the root port
parent class to set defaults. This allows child classes to set these
via properties or via their own instance_init callback, without
requiring all implementions to support arbitrary user selected values.
Cc: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
Tested-by: Geoffrey McRae <geoff@hostfission.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
Create properties to be able to define speeds and widths for PCIe
links. The only tricky bit here is that our get and set callbacks
translate from the fixed QAPI automagic enums to those we define
in PCI code to represent the actual register segment value.
Cc: Eric Blake <eblake@redhat.com>
Tested-by: Geoffrey McRae <geoff@hostfission.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
The PCIe link speed and width between a downstream device and its
upstream port is negotiated on real hardware and susceptible to
dynamic changes due to signal issues and power management. In the
emulated device case there is no real hardware link, but we still
might wish to have some consistency between endpoint and downstream
port via a virtual negotiation. There is of course a real link for
assigned devices and this same virtual negotiation allows the
downstream port to match the endpoint, synchronizing on every read
to support underlying physical hardware dynamically adjusting the
link.
This negotiation is intentionally unidirectional for compatibility.
If the endpoint exceeds the capabilities of the downstream port or
there is no endpoint device, the downstream port reports negotiation
to its maximum speed and width, matching the previous case where
negotiation was absent. De-tuning the endpoint to match a virtual
link doesn't seem to benefit anyone and is a condition we've thus
far reported without functional issues.
Note that PCI_EXP_LNKSTA is already ignored for migration
compatibility via pcie_cap_v1_fill().
Cc: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
Tested-by: Geoffrey McRae <geoff@hostfission.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
In preparation for reporting higher virtual link speeds and widths,
create enums and macros to help us manage them.
Cc: Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
Tested-by: Geoffrey McRae <geoff@hostfission.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
SMBIOS is just another firmware interface used by some QEMU models.
We will later introduce more firmware interfaces in this subdirectory.
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
All the consumers of "hw/smbios/ipmi.h" are located in hw/smbios/.
There is no need to have this include publicly exposed,
reduce the visibility by moving it in hw/smbios/.
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
staging
QAPI patches for 2018-12-18
# gpg: Signature made Tue 18 Dec 2018 07:20:11 GMT
# gpg: using RSA key 3870B400EB918653
# gpg: Good signature from "Markus Armbruster <armbru@redhat.com>"
# gpg: aka "Markus Armbruster <armbru@pond.sub.org>"
# Primary key fingerprint: 354B C8B3 D7EB 2A6B 6867 4E5F 3870 B400 EB91 8653
* remotes/armbru/tags/pull-qapi-2018-12-18:
qapi: fix flat union on uncovered branches conditionals
qmp hmp: Make system_wakeup check wake-up support and run state
qga: update guest-suspend-ram and guest-suspend-hybrid descriptions
qmp: query-current-machine with wakeup-suspend-support
qmp: Split ShutdownCause host-qmp into quit and system-reset
qmp: Add reason to SHUTDOWN and RESET events
qapi: Turn ShutdownCause into QAPI enum
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
|
|
The qmp/hmp command 'system_wakeup' is simply a direct call to
'qemu_system_wakeup_request' from vl.c. This function verifies if
runstate is SUSPENDED and if the wake up reason is valid before
proceeding. However, no error or warning is thrown if any of those
pre-requirements isn't met. There is no way for the caller to
differentiate between a successful wakeup or an error state caused
when trying to wake up a guest that wasn't suspended.
This means that system_wakeup is silently failing, which can be
considered a bug. Adding error handling isn't an API break in this
case - applications that didn't check the result will remain broken,
the ones that check it will have a chance to deal with it.
Adding to that, the commit before previous created a new QMP API called
query-current-machine, with a new flag called wakeup-suspend-support,
that indicates if the guest has the capability of waking up from suspended
state. Although such guest will never reach SUSPENDED state and erroring
it out in this scenario would suffice, it is more informative for the user
to differentiate between a failure because the guest isn't suspended versus
a failure because the guest does not have support for wake up at all.
All this considered, this patch changes qmp_system_wakeup to check if
the guest is capable of waking up from suspend, and if it is suspended.
After this patch, this is the output of system_wakeup in a guest that
does not have wake-up from suspend support (ppc64):
(qemu) system_wakeup
wake-up from suspend is not supported by this guest
(qemu)
And this is the output of system_wakeup in a x86 guest that has the
support but isn't suspended:
(qemu) system_wakeup
Unable to wake up: guest is not in suspended state
(qemu)
Reported-by: Balamuruhan S <bala24@linux.vnet.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20181205194701.17836-4-danielhb413@gmail.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
|
|
When issuing the qmp/hmp 'system_wakeup' command, what happens in a
nutshell is:
- qmp_system_wakeup_request set runstate to RUNNING, sets a wakeup_reason
and notify the event
- in the main_loop, all vcpus are paused, a system reset is issued, all
subscribers of wakeup_notifiers receives a notification, vcpus are then
resumed and the wake up QAPI event is fired
Note that this procedure alone doesn't ensure that the guest will awake
from SUSPENDED state - the subscribers of the wake up event must take
action to resume the guest, otherwise the guest will simply reboot. At
this moment, only the ACPI machines via acpi_pm1_cnt_init and xen_hvm_init
have wake-up from suspend support.
However, only the presence of 'system_wakeup' is required for QGA to
support 'guest-suspend-ram' and 'guest-suspend-hybrid' at this moment.
This means that the user/management will expect to suspend the guest using
one of those suspend commands and then resume execution using system_wakeup,
regardless of the support offered in system_wakeup in the first place.
This patch creates a new API called query-current-machine [1], that holds
a new flag called 'wakeup-suspend-support' that indicates if the guest
supports wake up from suspend via system_wakeup. The machine is considered
to implement wake-up support if a call to a new 'qemu_register_wakeup_support'
is made during its init, as it is now being done inside acpi_pm1_cnt_init
and xen_hvm_init. This allows for any other machine type to declare wake-up
support regardless of ACPI state or wakeup_notifiers subscription, making easier
for newer implementations that might have their own mechanisms in the future.
This is the expected output of query-current-machine when running a x86
guest:
{"execute" : "query-current-machine"}
{"return": {"wakeup-suspend-support": true}}
Running the same x86 guest, but with the --no-acpi option:
{"execute" : "query-current-machine"}
{"return": {"wakeup-suspend-support": false}}
This is the output when running a pseries guest:
{"execute" : "query-current-machine"}
{"return": {"wakeup-suspend-support": false}}
With this extra tool, management can avoid situations where a guest
that does not have proper suspend/wake capabilities ends up in
inconsistent state (e.g.
https://github.com/open-power-host-os/qemu/issues/31).
[1] the decision of creating the query-current-machine API is based
on discussions in the QEMU mailing list where it was decided that
query-target wasn't a proper place to store the wake-up flag, neither
was query-machines because this isn't a static property of the
machine object. This new API can then be used to store other
dynamic machine properties that are scattered around the code
ATM. More info at:
https://lists.gnu.org/archive/html/qemu-devel/2018-05/msg04235.html
Reported-by: Balamuruhan S <bala24@linux.vnet.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20181205194701.17836-2-danielhb413@gmail.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
|