Age | Commit message (Collapse) | Author |
|
spapr_irq_init currently uses existing macro SPAPR_XIRQ_BASE to refer to
the range of CPU IPIs during initialization of nr-irqs property.
It is more appropriate to have its own define which can be further
reused as appropriate for correct interpretation.
Suggested-by: Cedric Le Goater <clg@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Kowshik Jois <kowsjois@linux.ibm.com>
Signed-off-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
(cherry picked from commit 2df5c1f5b014126595a26c6797089d284a3b211c)
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
|
|
Generated using:
$ ./scripts/codeconverter/converter.py -i \
--pattern=TypeCheckMacro $(git grep -l '' -- '*.[ch]')
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-12-ehabkost@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-13-ehabkost@redhat.com>
Message-Id: <20200831210740.126168-14-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
|
|
Some typedefs and macros are defined after the type check macros.
This makes it difficult to automatically replace their
definitions with OBJECT_DECLARE_TYPE.
Patch generated using:
$ ./scripts/codeconverter/converter.py -i \
--pattern=QOMStructTypedefSplit $(git grep -l '' -- '*.[ch]')
which will split "typdef struct { ... } TypedefName"
declarations.
Followed by:
$ ./scripts/codeconverter/converter.py -i --pattern=MoveSymbols \
$(git grep -l '' -- '*.[ch]')
which will:
- move the typedefs and #defines above the type check macros
- add missing #include "qom/object.h" lines if necessary
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-9-ehabkost@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-10-ehabkost@redhat.com>
Message-Id: <20200831210740.126168-11-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
|
|
Move the typedef from spapr_irq.h to spapr.h, and use "struct
SpaprMachineState" in the spapr_*.h headers (to avoid circular
header dependencies).
This will make future conversion to OBJECT_DECLARE* easier.
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Tested-By: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200825192110.3528606-28-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
|
|
The XIVE and XICS-on-XIVE KVM devices on POWER9 hosts can greatly reduce
their consumption of some scarce HW resources, namely Virtual Presenter
identifiers, if they know the maximum number of vCPUs that may run in the
VM.
Prepare ground for this by passing the value down to xics_kvm_connect()
and kvmppc_xive_connect(). This is purely mechanical, no functional
change.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157478678301.67101.2717368060417156338.stgit@bahia.tlslab.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
SpaprInterruptControllerClass and PnvChipClass have an intc_create() method
that calls the appropriate routine, ie. icp_create() or xive_tctx_create(),
to establish the link between the VCPU and the presenter component of the
interrupt controller during realize.
There aren't any symmetrical call to be called when the VCPU gets unrealized
though. It is assumed that object_unparent() is the only thing to do.
This is questionable because the parenting logic around the CPU and
presenter objects is really an implementation detail of the interrupt
controller. It shouldn't be open-coded in the machine code.
Fix this by adding an intc_destroy() method that undoes what was done in
intc_create(). Also NULLify the presenter pointers to avoid having
stale pointers around. This will allow to reliably check if a vCPU has
a valid presenter.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157192724208.3146912.7254684777515287626.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
|
|
On the sPAPR machine and PowerNV machine, the interrupt presenters are
created by a machine handler at the core level and are reset
independently. This is not consistent and it raises issues when it
comes to handle hot-plugged CPUs. In that case, the presenters are not
reset. This is less of an issue in XICS, although a zero MFFR could
be a concern, but in XIVE, the OS CAM line is not set and this breaks
the presenting algorithm. The current code has workarounds which need
a global cleanup.
Extend the sPAPR IRQ backend and the PowerNV Chip class with a new
cpu_intc_reset() handler called by the CPU reset handler and remove
the XiveTCTX reset handler which is now redundant.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191022163812.330-6-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
For the benefit of peripheral device allocation, the number of available
irqs really wants to be the same on a given machine type version,
regardless of what irq backends we are using. That's the case now, but
only because we make sure the different SpaprIrq instances have the same
value except for the special legacy one.
Since this really only depends on machine type version, move the value to
SpaprMachineClass instead of SpaprIrq. This also puts the code to set it
to the lower value on old machine types right next to setting
legacy_irq_allocation, which needs to go hand in hand.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
The nr_msis value we use here has to line up with whether we're using
legacy or modern irq allocation. Therefore it's safer to derive it based
on legacy_irq_allocation rather than having SpaprIrq contain a canned
value.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
The remaining logic in the post_load hook really belongs to the interrupt
controller backends, and just needs to be called on the active controller
(after the active controller is set to the right thing based on the
incoming migration in the generic spapr_irq_post_load() logic).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
It turns out that all the logic in the SpaprIrq::reset hooks (and some in
the SpaprIrq::post_load hooks) isn't really related to resetting the irq
backend (that's handled by the backends' own reset routines). Rather its
about getting the backend ready to be the active interrupt controller or
stopping being the active interrupt controller - reset (and post_load) is
just the only time that changes at present.
To make this flow clearer, move the logic into the explicit backend
activate and deactivate hooks.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
This hook is a bit odd. The only caller is spapr_irq_init_kvm(), but
it explicitly takes an SpaprIrq *, so it's never really called through the
current SpaprIrq. Essentially this is just a way of passing through a
function pointer so that spapr_irq_init_kvm() can handle some
configuration and error handling logic without duplicating it between the
xics and xive reset paths.
So, make it just take that function pointer. Because of earlier reworks
to the KVM connect/disconnect code in the xics and xive backends we can
also eliminate some wrapper functions and streamline error handling a bit.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
This method depends only on the active irq controller. Now that we've
formalized the notion of active controller we can dispatch directly
through that, rather than dispatching via SpaprIrq with the dual
version having to do a second conditional dispatch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
This method depends only on the active irq controller. Now that we've
formalized the notion of active controller we can dispatch directly
through that, rather than dispatching via SpaprIrq with the dual
version having to do a second conditional dispatch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
This method depends only on the active irq controller. Now that we've
formalized the notion of active controller we can dispatch directly through
that, rather than dispatching via SpaprIrq with the dual version having
to do a second conditional dispatch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
spapr now has the mechanism of constructing both XICS and XIVE instances of
the SpaprInterruptController interface. However, only one of the interrupt
controllers will actually be active at any given time, depending on feature
negotiation with the guest. This is handled in the current code via
spapr_irq_current() which checks the OV5 vector from feature negotiation to
determine the current backend.
Determining the active controller at the point we need it like this
can be pretty confusing, because it makes it very non obvious at what
points the active controller can change. This can make it difficult
to reason about the code and where a change of active controller could
appear in sequence with other events.
Make this mechanism more explicit by adding an 'active_intc' pointer
and an explicit spapr_irq_update_active_intc() function to update it
from the CAS state. We also add hooks on the intc backend which will
get called when it is activated or deactivated.
For now we just introduce the switch and hooks, later patches will
actually start using them.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
SpaprInterruptController
These methods, like cpu_intc_create, really belong to the interrupt
controller, but need to be called on all possible intcs.
Like cpu_intc_create, therefore, make them methods on the intc and
always call it for all existing intcs.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
SpaprInterruptController
This method essentially represents code which belongs to the interrupt
controller, but needs to be called on all possible intcs, rather than
just the currently active one. The "dual" version therefore calls
into the xics and xive versions confusingly.
Handle this more directly, by making it instead a method on the intc
backend, and always calling it on every backend that exists.
While we're there, streamline the error reporting a bit.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
The SpaprIrq structure is used to represent ths spapr machine's irq
backend. Except that it kind of conflates two concepts: one is the
backend proper - a specific interrupt controller that we might or
might not be using, the other is the irq configuration which covers
the layout of irq space and which interrupt controllers are allowed.
This leads to some pretty confusing code paths for the "dual"
configuration where its hooks redirect to other SpaprIrq structures
depending on the currently active irq controller.
To clean this up, we start by introducing a new
SpaprInterruptController QOM interface to represent strictly an
interrupt controller backend, not counting anything configuration
related. We implement this interface in the XICs and XIVE interrupt
controllers, and in future we'll move relevant methods from SpaprIrq
into it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
This method is used to set up the interrupt backends for the current
configuration. However, this means some confusing redirection between
the "dual" mode init and the init hooks for xics only and xive only modes.
Since we now have simple flags indicating whether XICS and/or XIVE are
supported, it's easier to just open code each initialization directly in
spapr_irq_init(). This will also make some future cleanups simpler.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
|
|
SpaprIrq::ov5 stores the value for a particular byte in PAPR option vector
5 which indicates whether XICS, XIVE or both interrupt controllers are
available. As usual for PAPR, the encoding is kind of overly complicated
and confusing (though to be fair there are some backwards compat things it
has to handle).
But to make our internal code clearer, have SpaprIrq encode more directly
which backends are available as two booleans, and derive the OV5 value from
that at the point we need it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
|
|
spapr_irq_free() can be used to free multiple irqs at once. That's useful
for its callers, but there's no need to make the individual backend hooks
handle this. We can loop across the irqs in spapr_irq_free() itself and
have the hooks just do one at time.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
This method is used to determine the name of the irq backend's node in the
device tree, so that we can find its phandle (after SLOF may have modified
it from the phandle we initially gave it).
But, in the two cases the only difference between the node name is the
presence of a unit address. Searching for a node name without considering
unit address is standard practice for the device tree, and
fdt_subnode_offset() will do exactly that, making this method unecessary.
While we're there, remove the XICS_NODENAME define. The name
"interrupt-controller" is required by PAPR (and IEEE1275), and a bunch of
places assume it already.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
|
|
Currently spapr_qirq(), whic is used to find the qemu_irq for an spapr
global irq number, redirects through the SpaprIrq::qirq method. But
the array of qemu_irqs is allocated in the PAPR layer, not the
backends, and so the method implementations all return the same thing,
just differing in the preliminary checks they make.
So, we can remove the method, and just implement spapr_qirq() directly,
including all the relevant checks in one place. We change all those
checks into assert()s as well, since a failure here indicates an error in
the calling code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
|
|
The only reason this parameter was needed was to work around the
inconsistent meaning of nr_irqs between xics and xive. Now that we've
fixed that, we can consistently use the number directly in the SpaprIrq
configuration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
|
|
Both the XICS and XIVE interrupt backends have a "nr-irqs" property, but
it means slightly different things. For XICS (or, strictly, the ICS) it
indicates the number of "real" external IRQs. Those start at XICS_IRQ_BASE
(0x1000) and don't include the special IPI vector. For XIVE, however, it
includes the whole IRQ space, including XIVE's many IPI vectors.
The spapr code currently doesn't handle this sensibly, with the
nr_irqs value in SpaprIrq having different meanings depending on the
backend. We fix this by renaming nr_irqs to nr_xirqs and making it
always indicate just the number of external irqs, adjusting the value
we pass to XIVE accordingly. We also move to using common constants
in most of the irq configurations, to make it clearer that the IRQ
space looks the same to the guest (and emulated devices), even if the
backend is different.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
|
|
PHBs already take care of clearing the MSIs from the bitmap during reset
or unplug. No need to do this globally from the machine code. Rather add
an assert to ensure that PHBs have acted as expected.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156415228966.1064338.190189424190233355.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix crash in qtest case where spapr->irq_map can be NULL at the
new assert()]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
In my "build everything" tree, changing hw/irq.h triggers a recompile
of some 5400 out of 6600 objects (not counting tests and objects that
don't depend on qemu/osdep.h).
hw/hw.h supposedly includes it for convenience. Several other headers
include it just to get qemu_irq and.or qemu_irq_handler.
Move the qemu_irq and qemu_irq_handler typedefs from hw/irq.h to
qemu/typedefs.h, and then include hw/irq.h only where it's still
needed. Touching it now recompiles only some 500 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190812052359.30071-13-armbru@redhat.com>
|
|
Back in 2016, we discussed[1] rules for headers, and these were
generally liked:
1. Have a carefully curated header that's included everywhere first. We
got that already thanks to Peter: osdep.h.
2. Headers should normally include everything they need beyond osdep.h.
If exceptions are needed for some reason, they must be documented in
the header. If all that's needed from a header is typedefs, put
those into qemu/typedefs.h instead of including the header.
3. Cyclic inclusion is forbidden.
This patch gets include/ closer to obeying 2.
It's actually extracted from my "[RFC] Baby steps towards saner
headers" series[2], which demonstrates a possible path towards
checking 2 automatically. It passes the RFC test there.
[1] Message-ID: <87h9g8j57d.fsf@blackfin.pond.sub.org>
https://lists.nongnu.org/archive/html/qemu-devel/2016-03/msg03345.html
[2] Message-Id: <20190711122827.18970-1-armbru@redhat.com>
https://lists.nongnu.org/archive/html/qemu-devel/2019-07/msg02715.html
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-2-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
|
|
The init_emu() handles are now empty. Remove them and rename
spapr_irq_init_device() to spapr_irq_init_kvm().
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190614165920.12670-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The way the XICS and the XIVE devices are initialized follows the same
pattern. First, try to connect to the KVM device and if not possible
fallback on the emulated device, unless a kernel_irqchip is required.
The spapr_irq_init_device() routine implements this sequence in
generic way using new sPAPR IRQ handlers ->init_emu() and ->init_kvm().
The XIVE init sequence is moved under the associated sPAPR IRQ
->init() handler. This will change again when KVM support is added for
the dual interrupt mode.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-12-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
This will be used by PHB hotplug in order to create the "interrupt-map"
property of the PHB node.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155059669374.1466090.12943228478046223856.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
This will be needed by PHB hotplug in order to access the "phandle"
property of the interrupt controller node.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <155059668867.1466090.6339199751719123386.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
When using the 'dual' interrupt mode, the source numbers of both sPAPR
IRQ backends are aligned to share a common IRQ number space and to use
a similar mapping of the machine qemu_irq array which is indexed by
the source number.
The XICS IRQ number range initially being [ 0x1000 - 0x2000 ], this
requires to change the XICS ICSState offset to 0 and to provision for
an extra 4K of source numbers and qemu_irqs which will never be used
by the machine when running under the XICS interrupt mode. This is not
an optimal solution.
Change the init() method to allocate an IRQ number space of the
expected size for the XICS sPAPR IRQ backend. It breaks the interrupt
signaling when under the 'dual' mode because source numbers have
unexpected values but next patch will fix that.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190213210756.27032-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The 'dual' sPAPR IRQ backend supports both interrupt mode, XIVE
exploitation mode and the legacy compatibility mode (XICS). both modes
are not supported at the same time.
The machine starts with the legacy mode and a new interrupt mode can
then be negotiated by the CAS process. In this case, the new mode is
activated after a reset to take into account the required changes in
the machine. These impact the device tree layout, the interrupt
presenter object and the exposed MMIO regions in the case of XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The qemu_irq array is now allocated at the machine level using a sPAPR
IRQ set_irq handler depending on the chosen interrupt mode. The use of
this handler is slightly inefficient today but it will become necessary
when the 'dual' interrupt mode is introduced.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Today, the interrupt presenter is linked to a CPU using the
cpu_intc_create() method of the sPAPR IRQ backend. The resulting
object is assigned to the PowerPCCPU 'intc' pointer whatever the
interrupt mode, XICS or XIVE.
To support the 'dual' interrupt mode, we will need to distinguish
between the two presenter objects and for that, we plan to introduce a
second interrupt presenter object pointer under the PowerPCCPU. The
modifications below move the assignment of the presenter object under
the cpu_intc_create() method to prepare ground for the future changes.
Both sPAPR and PowerNV machines are impacted.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The interrupt modes supported by the hypervisor are advertised to the
guest with new bits definitions of the option vector 5 of property
"ibm,arch-vec-5-platform-support. The byte 23 bits 0-1 of the OV5 are
defined as follow :
0b00 PAPR 2.7 and earlier (Legacy systems)
0b01 XIVE Exploitation mode only
0b10 Either available
If the client/guest selects the XIVE interrupt mode, it informs the
hypervisor by returning the value 0b01 in byte 23 bits 0-1. A 0b00
value indicates the use of the XICS interrupt mode (Legacy systems).
The sPAPR IRQ backend is extended with these definitions and the
values are directly used to populate the "ibm,arch-vec-5-platform-support"
property. The interrupt mode is advertised under TCG and under KVM.
Although a KVM XIVE device is not yet available, the machine can still
operate with kernel_irqchip=off. However, we apply a restriction on
the CPU which is required to be a POWER9 when a XIVE interrupt
controller is in use.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
For the time being, the XIVE reset handler updates the OS CAM line of
the vCPU as it is done under a real hypervisor when a vCPU is
scheduled to run on a HW thread. This will let the XIVE presenter
engine find a match among the NVTs dispatched on the HW threads.
This handler will become even more useful when we introduce the
machine supporting both interrupt modes, XIVE and XICS. In this
machine, the interrupt mode is chosen by the CAS negotiation process
and activated after a reset.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Introduce a new sPAPR IRQ handler to handle resend after migration
when the machine is using a KVM XICS interrupt controller model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Each interrupt mode has its own specific interrupt presenter object,
that we store under the CPU object, one for XICS and one for XIVE.
Extend the sPAPR IRQ backend with a new handler to support them both.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The XIVE interface for the guest is described in the device tree under
the "interrupt-controller" node. A couple of new properties are
specific to XIVE :
- "reg"
contains the base address and size of the thread interrupt
managnement areas (TIMA), for the User level and for the Guest OS
level. Only the Guest OS level is taken into account today.
- "ibm,xive-eq-sizes"
the size of the event queues. One cell per size supported, contains
log2 of size, in ascending order.
- "ibm,xive-lisn-ranges"
the IRQ interrupt number ranges assigned to the guest for the IPIs.
and also under the root node :
- "ibm,plat-res-int-priorities"
contains a list of priorities that the hypervisor has reserved for
its own use. OPAL uses the priority 7 queue to automatically
escalate interrupts for all other queues (DD2.X POWER9). So only
priorities [0..6] are allowed for the guest.
Extend the sPAPR IRQ backend with a new handler to populate the DT
with the appropriate "interrupt-controller" node.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The XIVE IRQ backend uses the same layout as the new XICS backend but
covers the full range of the IRQ number space. The IRQ numbers for the
CPU IPIs are allocated at the bottom of this space, below 4K, to
preserve compatibility with XICS which does not use that range.
This should be enough given that the maximum number of CPUs is 1024
for the sPAPR machine under QEMU. For the record, the biggest POWER8
or POWER9 system has a maximum of 1536 HW threads (16 sockets, 192
cores, SMT8).
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
Initialize the MSI bitmap from it as this will be necessary for the
sPAPR IRQ backend for XIVE.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The new layout using static IRQ number does not leave much space to
the dynamic MSI range, only 0x100 IRQ numbers. Increase the total
number of IRQS for newer machines and introduce a legacy XICS backend
for pre-3.1 machines to maintain compatibility.
For the old backend, provide a 'nr_msis' value covering the full IRQ
number space as it does not use the bitmap allocator to allocate MSI
interrupt numbers.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
The number of MSI interrupts a sPAPR machine can allocate is in direct
relation with the number of interrupts of the sPAPRIrq backend. Define
statically this value at the sPAPRIrq class level and use it for the
"ibm,pe-total-#msi" property of the sPAPR PHB.
According to the PAPR specs, "ibm,pe-total-#msi" defines the maximum
number of MSIs that are available to the PE. We choose to advertise
the maximum number of MSIs that are available to the machine for
simplicity of the model and to avoid segmenting the MSI interrupt pool
which can be easily shared. If the pool limit is reached, it can be
extended dynamically.
Finally, remove XICS_IRQS_SPAPR which is now unused.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
This proposal moves all the related IRQ routines of the sPAPR machine
behind a sPAPR IRQ backend interface 'spapr_irq' to prepare for future
changes. First of which will be to increase the size of the IRQ number
space, then, will follow a new backend for the POWER9 XIVE IRQ controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|
|
This proposal introduces a new IRQ number space layout using static
numbers for all devices, depending on a device index, and a bitmap
allocator for the MSI IRQ numbers which are negotiated by the guest at
runtime.
As the VIO device model does not have a device index but a "reg"
property, we introduce a formula to compute an IRQ number from a "reg"
value. It should minimize most of the collisions.
The previous layout is kept in pre-3.1 machines raising the
'legacy_irq_allocation' machine class flag.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
|