Age | Commit message (Collapse) | Author |
|
These sPAPR files do not implement devices, move them over.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Note that target-alpha accesses this field from TCG, now using a
negative offset. Therefore the field is placed last in CPUState.
Pass PowerPCCPU to [kvm]ppc_fixup_cpu() to facilitate this change.
Move common parts of mips cpu_state_reset() to mips_cpu_reset().
Acked-by: Richard Henderson <rth@twiddle.net> (for alpha)
[AF: Rebased onto ppc CPU subclasses and openpic changes]
Signed-off-by: Andreas Färber <afaerber@suse.de>
|
|
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Kernel-based RTAS calls will not have a qemu handler, but will
still be registered in qemu in order to be assigned a token
number and appear in the device-tree.
Let's test for the name being NULL rather than the handler
when deciding to skip an entry while building the device-tree
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The kernel will soon be able to service some RTAS calls. However the
choice of tokens will still be up to userspace. To support this have
spapr_rtas_register() return the token that is allocated for an
RTAS call, that allows the calling code to tell the kernel what the
token value is.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
CPUArchState is no longer needed there.
Signed-off-by: Andreas Färber <afaerber@suse.de>
|
|
Currently the pseries machine code allows a callback to be registered
for a hypercall number twice, as long as it's the same callback the second
time. We don't test for duplicate registrations of RTAS callbacks at all
so it will effectively be last registratiojn wins.
This was originally done because it was awkward to ensure that the
registration happened exactly once, but the code has since been
restructured so that's no longer the case.
Duplicate registration of a hypercall or RTAS call could well suggest
a duplicate initialization which could cause other problems, so this patch
makes duplicate registrations a bug, to prevent the old behaviour from
hiding other bugs.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
target_phys_addr_t is unwieldly, violates the C standard (_t suffixes are
reserved) and its purpose doesn't match the name (most target_phys_addr_t
addresses are not target specific). Replace it with a finger-friendly,
standards conformant hwaddr.
Outstanding patchsets can be fixed up with the command
git rebase -i --exec 'find -name "*.[ch]"
| xargs s/target_phys_addr_t/hwaddr/g' origin
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
|
|
The current pseries machine init function iterates over the CPUs at several
points, doing various bits of initialization. This is messy; these can
and should be merged into a single iteration doing all the necessary per
cpu initialization. Worse, some of these initializations were setting up
state which should be set on every reset, not just at machine init time.
A few of the initializations simply weren't necessary at all.
This patch, therefore, moves those things that need to be to the
per-cpu reset handler, and combines the remainder into two loops over
the cpus (which also creates them). The second loop is for setting up
hash table information, and will be removed in a subsequent patch also
making other fixes to the hash table setup.
This exposes a bug in our start-cpu RTAS routine (called by the guest to
start up CPUs other than CPU0) under kvm. Previously, this function did
not make a call to ensure that it's changes to the new cpu's state were
pushed into KVM in-kernel state. We sort-of got away with this because
some of the initializations had already placed the secondary CPUs into the
right starting state for the sorts of Linux guests we've been running.
Nonetheless the start-cpu RTAS call's behaviour was not correct and could
easily have been broken by guest changes. This patch also fixes it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently the pseries machine contains not one but two somewhat ugly hacks
to allow printing of early debug messages before the guest has properly
read the device tree.
First, we special case H_PUT_TERM_CHAR so that a vtermno of 0 (usually
invalid) will look for a suitable vty and use that. This supports Linux's
early debug code which will use H_PUT_TERM_CHAR with vtermno==0 before
reading the device tree. Second, we support the RTAS display-character call.
This takes no vtermno so we assume the address of the default first VTY.
This patch makes things more consistent by folding the second hack into the
first. Now, display-character uses the existing vty_lookup() function to
do the same search for a suitable VTY.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andreas Färber <afaerber@suse.de>
|
|
This patch adds the PAPR defined RTAS system-reboot call to the pseries
machine emulation, providing the guest with a way to trigger a reboot.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andreas Färber <afaerber@suse.de>
|
|
Scripted conversion:
for file in hw/ppc*.[hc] hw/mpc8544_guts.c hw/spapr*.[hc] hw/virtex_ml507.c hw/xics.c; do
sed -i "s/CPUState/CPUPPCState/g" $file
done
Signed-off-by: Andreas Färber <afaerber@suse.de>
Acked-by: Anthony Liguori <aliguori@us.ibm.com>
|
|
Replace device_init() with generalized type_init().
While at it, unify naming convention: type_init([$prefix_]register_types)
Also, type_init() is a function, so add preceding blank line where
necessary and don't put a semicolon after the closing brace.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Cc: Anthony Liguori <anthony@codemonkey.ws>
Cc: malc <av1474@comtv.ru>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
|
|
Currently there is no implementation for set-time-of-day rtas function,
which causes the following warning "setting the clock failed (-1)" on
the guest.
This patch just creates this function, get the timedate diff and store in
the papr environment, so that the correct value will be returned by
get-time-of-day.
In order to try it, just adjust the hardware time, run hwclock --systohc,
so that, on when the system runs hwclock --hctosys, the value is correctly
adjusted, i.e. the host time plus the timediff.
Signed-off-by: Breno Leitao <brenohl@br.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently the qemu pseries machine numbers its virtual serial devices
from 0. However, existing pSeries machines running pHyp number them from
0x30000000.
In theory these indices are arbitrary, since everything necessary for the
kernel to find them is advertised in the device tree. However the debian
installer, at least, incorrectly looks for a device named vty@30... to
determine whether to use the hypervisor console.
Therefore this patch moves the numbers we use to match the existing pHyp
practice, in order to workaround broken userspace apps of this type.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
options
Currently, the emulated pSeries machine requires the use of the
-kernel parameter in order to explicitly load a guest kernel. This
means booting from the virtual disk, cdrom or network is not possible.
This patch addresses this limitation by inserting a within-partition
firmware image (derived from the "SLOF" free Open Firmware project).
If -kernel is not specified, qemu will now load the SLOF image, which
has access to the qemu boot device list through the device tree, and
can boot from any of the usual virtual devices.
In order to support the new firmware, an extension to the emulated
machine/hypervisor is necessary. Unlike Linux, which expects
multi-CPU entry to be handled kexec() style, the SLOF firmware expects
only one CPU to be active at entry, and to use a hypervisor RTAS
method to enable the other CPUs one by one.
This patch also implements this 'start-cpu' method, so that SLOF can
start the secondary CPUs and marshal them into the kexec() holding
pattern ready for entry into the guest OS. Linux should, and in the
future might directly use the start-cpu method to enable initially
disabled CPUs, but for now it does require kexec() entry.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This patch adds several small utility hypercalls and RTAS methods to
the pSeries platform emulation. Specifically:
* 'display-character' rtas call
This just prints a character to the console, it's occasionally used
for early debug of the OS. The support includes a hack to make this
RTAS call respond on the normal token value present on real hardware,
since some early debugging tools just assume this value without
checking the device tree.
* 'get-time-of-day' rtas call
This one just takes the host real time, converts to the PAPR described
format and returns it to the guest.
* 'power-off' rtas call
This one shuts down the emulated system.
* H_DABR hypercall
On pSeries, the DABR debug register is usually a hypervisor resource
and virtualized through this hypercall. If the hypercall is not
present, Linux will under some circumstances attempt to manipulate the
DABR directly which will fail on this emulated machine.
This stub implementation is enough to stop that behaviour, although it
doesn't actually implement the requested DABR operations as yet.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
On pSeries machines, operating systems can instantiate "RTAS" (Run-Time
Abstraction Services), a runtime component of the firmware which implements
a number of low-level, infrequently used operations. On logical partitions
under a hypervisor, many of the RTAS functions require hypervisor
privilege. For simplicity, therefore, hypervisor systems typically
implement the in-partition RTAS as just a tiny wrapper around a hypercall
which actually implements the various RTAS functions.
This patch implements such a hypercall based RTAS for our emulated pSeries
machine. A tiny in-partition "firmware" calls a new hypercall, which
looks up available RTAS services in a table.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|